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Abstract

The main objective of this paper is to study the pyramidal fuzzy numbers in fuzzy
differential equations and introduce a new approach for solving fuzzy boundary value problems.
Also, we give an example, where we compare the fuzziness of ""pyramidal’* solution to that one,

which is derived by the extension principle.
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1-Introduction:

The concept of fuzzy sets was
introduced initially by Zadeh in 1965, [1].
Since then, this concept is used expensively in
fuzzy systems described by fuzzy processes
which look as their natural extension into the
time domain.

The term "'fuzzy differential equation™
was coined in 1978 by A. Kandel, Wj. Byatt,
in [2] they were carefully studied, for
example, solution of fuzzy differential
equations provide a noteworthy example of
time dependent fuzzy sets in [3],[4].it was
followed up by dubois and prade [5 ] who
used the extension principle in their
approach. The study of fuzzy differential
equations has been initiated as an
independent subject in conjunction with fuzzy
valued analysis [6] and [7] and set-valued
differential equations [8] Initially, the
derivative for fuzzy valued mappings was
developed by Puri and Ralescu the theory of
fuzzy differential equations seems to have
split into two independent branches, where
the first one relies upon the notion of
Hukuhara derivative [9], and the second we
define the class of pyramidal fuzzy numbers
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and offer a new definition of the solution to
fuzzy differential equations.

In the last few years, many works have
been done by several authors in theoretical
and applied fields see [10, 11, 12]. A variety of
exact, approximate and purely numerical
methods are available to find the solution of a
fuzzy initial value problem. It is an important
problem that we know a differential equation
has a unique solution. There are many
theorems and reasonable conditions for this
aim. The shooting method can approximate
the unique solution for a linear fuzzy
boundary value differential equations see [13,
14].

In this paper, the concept of pyramidal
fuzzy numbers have been used to solve
differential equations and then extended to
solve fuzzy boundary value problems (FBVP)

2-Preliminaries

In this section, several basic
concepts of fuzzy system, fuzzy differential
equations and function of matrices will be
recalled; we start with the obvious definition
of fuzzy differential equation.
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Definition (2.1) [15]:

A fuzzy set A on the set of real numbers R is convex if and only if:
Mz (Axs+ (1-2) X2) = Min {Mz(x1), Mg (<)}-.. (2.1)

for all x1, X, € Rand all A € [0, 1].

Remark (2.2):

A fuzzy number is a function u: R— [0, 1] satisfying the following properties:
1-u is normal, i.e. there exists a unique Xo € R with u(xp) = 1.
2-u is convex fuzzy set.
3- uis upper semi continuous on R.
4-The support of A is compact.

The family of fuzzy numbers which will be denoted by E and for 0 < r < 1, [u]" denotes {x
€ R: u(x) >r} which is called the r-level set and [u]° denotes {x € R:u(x) > O}which is called the
support of the fuzzy number u it should be noted that for any 0< r <1, A[u]" is abounded closed
interval for u, re Eand A €R, the sum u+v and the product Au can be defined by :

[u+v]" = [u]"+ [v]'
[Au]"=[u]", re [0,1]

Where [u]'+ [v]" means the addition of two intervals of R and A[u]" means the product between a
scalar and a subset of R.

Arithmetic operation of arbitrary fuzzy numbers u= (u(r), u(r)), v= (v(r), v(r)) and A € R
can be defined as:

1-u=v if and only if u(r) =v(r) andu (r) =v(r)
2-ut v = (u(r) +u(r),u (r) +v(r))

3-u-v = (u(r)-u(r), u(r)-v(r)) (2.2)

(2u@), 2u@), ifa >0

4-A u=
(ra@aru @), ifa<o

Note that the crisp number o is simply represented by u(r) = u(r) = which is obtained
by letting r=1.

In the following, we recall some definitions concerning fuzzy differential equations:

Definition (2.3) [16]:
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Let P«(R") denote the family of all non-empty compact convex subsets of R" and define
the addition and scalar multiplication in Py (R") as usual. Let A and B be two non-empty and
bounded subsets of R", then the distance between A and B is defined by the following Housdorff
metric:

d (A,B)=max{sup inf d(a,b), sup inf d(b,a)} (2.3)
aceA beB beB aeA

Where d (a, b) denotes the usual distance function in R".

Now, we denote E" = {u: R" - [0, 1] u satisfies (1)-(4) above.
Definition (2.4) [17]:

A mapping f: T— E for the interval T € R is called a fuzzy process. Therefore, its r-level set
can be written as follows:

[f ()] =[f (1), f5 ()], t €T, r € [0,1] (2.4)
Definition (2.5)[18]:

A function F,: E"—Py (R is called Hukuhara differentiable at a point t, € R" if for h>0
sufficiently small, we have:

Fa(to +h)_F¢x(tO)
h

Fa(to)_Fa(tO_h)
h

= limh_)o—

F(x(to+h)_Fa(tO) (2 5)

= limh_,o h

where the limits of Hukuhara derivative are taken in the metric space (Px(R"),d), andF,(to+h)-
Fo(to)=(a-b .a -b).

Definition (2.6)[19]:

A mapping F: T-E" is called differentiable at to€ T, if for any a € [0, 1], the set valued
mapping F, (t) =[F(t)]* is Hukuhara differentiable at a point t, with D F, (to) and the family { D F,
(to)| e [0,1]} define a fuzzy number F’(to)€E", which is called the differentiation of F at to.

If F: T >E" is differentiable at t, € T, then we say that F’ (to) is the fuzzy derivative of F (to)
at the point ty.

3. Solutions of Pyramidal Fuzzy Numbers

The pyramidal number is one of the fundamental aspects in differential equations, in
general and of fuzzy differential equations in particular. Therefore, several approaches are
proposed to study this subject.

Hence, in this section, we will give one of such approaches as a theorem. Also, we will set and
present some of the basic ideas for the construction and proof of the pyramidal fuzzification.

Definition (3.1)[20]:
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The fuzzy number xeE" is called pyramidal if its a-level sets are n-dimensional rectangles
for 0< a <1.

The Pyramidal Method For Solving Fuzzy Differential Equations (3.2):

There exists a fuzzy process x: [0,T] »E" ,such that

x(0]* = x} [ga(D), g5.(0]  (3.1)
Where X denotes the usual set theoretical Cartesian product

Proof:see[20].

Pyramidal Fuzzification For Solving Linear Fuzzy Systems(3.3):

In this section, if the function z(t, xo) from the preceding section may be given in a closed
from, then a more direct method of fuzzification of the crisp solution may be proposed and used
later to solve FBVP'S.

Theorem

Consider an initial value problem for the linear system

1
X (t) = §_z = et Where A (t) is an nx n matrix
xn
2
el +At- ... (4.1)
Then the fuzzy process x (t) satisfies

)= A®Ox D+ a®
x(tg) = xo (4.2)

Where x(t) = ""(t”, will be solved.

d

There it can be obtained
% (t)= (Ef{, A) %o + ftto( Ei-TA) d(r)de (4.3)
Proof see [20].

4-Solution of Fuzzy Boundary Value Problems

Differential equations which are given with fuzzy conditions given at two or more points of
the domain of definition are called FBVP'S. We consider non fuzzy differential equations of order
two with boundary fuzzy conditions at the end points a, b.

y =f(X,y,¥),a<x<b,y (@) =a andy (b) =8....... (1)
under what conditions a boundary value problem has a solution or has a unique solution.
Existence and uniqueness (4.1) [11,16]

Suppose that f is continuous on the set
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D={(x,y,¥);a<x<b,-0 <y< o0, -0 <y’ < o0}
and the partial derivatives fyand f,- are also continuous on D. if
1) fy(x,y,y") >0, forall (x,y,y)inD, and
2) there exists a constant M such that

|fy, (x,,¥)| <M for all (x, Y, y) in D,
then the boundary value problem(1) has a unique solution.

Example (4.2)
Consider the following boundary value problem:

y+e ™ +sin(y)=0,1=sx<2,y(1)=y(2)=0.

Determine if the boundary value problem has a unique solution.

Rewrite y” =—e™ —sin (y). So f(x, y, ¥) = —e ™= sin (Y

Check conditions:

f(x,y, y) =—e™=sin(y), fy(x,y, y" )= xe™, and f, (X, y, y") = — cos(y’) are continuous on
D={(X,y,¥); 1<x<2,-00 <y< 00, -0 < y’ < 0}

() fy(x,y,y )=xe ™ >0onD.

(i) |fy (x.y.9)|=1-cos(y) | S1=M.
So, the boundary value problem has a unique solution in D.

Example (4.3)
Consider the linear boundary value problem:

y"=pX)y'+a(x)y +r(x),asx<b,y(a)=a andy (b) =B.
Under what condition(s) a linear BVP has a unique solution?
f(x, y,¥) = pX)y+ ax)y + r(x), fy(x,y, ¥ )= aXx), fy (x,y, y)=p(x) are continuous on D if
p(x),q(x) and r(x) are continuous fora<x<b

afy(x,y,y)=q(x)>0forasxsb.
b. Since fy” is continuous on a, b, fy” is bounded.

So, if p(x), q(x) and r(x) are continuous for a< x < b, and q(x) > 0 for a £ x < b, then the boundary

value problem has a unique solution.

The existence of a unique solution for fuzzy initial value problems will relate by the
shooting method of the existence of a unique solution for fuzzy boundary value problems is studied

depending on the initial fuzzy value problem.
5. The Shooting Method for Solving Fuzzy Linear BVP's [13, 14]:

The shooting method for solving fuzzy linear differential equation is based on the
replacement of the fuzzy boundary value problem by its two related fuzzy initial value problems, as

it is in usual case for solving non-fuzzy boundary value problems.
Now, consider the linear second order fuzzy boundary value problem:

V' =pX)Y'+ XY + 1(X), @ <X KD (5.1)
with fuzzy boundary conditions:
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~

V(@) = O, V(D) = B oo (5.2)

where 0. and Bare to pyramidal fuzzy .the differential equation
(i)  p(x), q(x) and r(x) are continuous on [a, b].
(i) q(x)>0on [a, b].
Hence, the related two fuzzy initial value problems are given by:
U’ =pxu'+q(x)u,a<x<b,u(a) = 0 ,u'(@) = L e (5.3)
and
V"= p(X)V'+ q(X)V + r(x),a<x<b, v(@) = 0, Vv'(@)= 0 (5.4)

To find the solutions of the fuzzy initial value problems (5.3) and (5.4), respectively, the a-
level equations related to these fuzzy differential equations are evaluated, which are:

[U"]e=pX)[u]e + g(X)[U]e [u(@)]e= 0 o [U(@)]e = ia ................................ (5.5)
and
[V'"1e=p () [V ]+ () [V]e + r(X), [V(@)]e =0 o [V'(8)]o= 0 G eereereenre e ans (5.6)
We can check that X(x) Is indeed the solution of the original fuzzy BVP, since:
Y/ = V'(x) + P ;(Mb()b) U’
and
Y= V() + b ;(\é()b) u"(x)
So:
"0 = (O p-v(b)
Y"(¥)=p(X)V'(x) +a(x) v (x) + r(x) + a(b) (P(x) u"(x) + a(x) u (x))
=p(H{ V' (x) + B;(\_:)()b) u’'()} +ax{v(x) + P ;(\_;()b) U} +r(x)
=p(x) Y'(x) +q(x) Y (X) + r(x)
Moreover:
_ _ B—v(b)
Y (@) =x1(0,t) = v(a)+ u(a) , 00<2m
nE— u(b)
_q B0 s

u(b)
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and
B—v(b
Y o) =x:8,8 = v(o)+ P20 )
= u(b)
i+ YO

u(b)
=v(b) +p-vb)=p

Hence, Y (X) is the unique solution to the linear BVP, provided, of course, that u (b) # 0.
Similarly, as in upper case, we have:
- Y/
y(x) =x(0,t) = V(x) + ————U(x) , 0<6<2n
u
Next, an illustrative example for solving FBVP analytically will be considered.

Example (5.1):

To solve the nonlinear fuzzy boundary value problem using the shooting method, where:
y =2y, y (0)=-1y () =-1,x €[03]

Hence the linearized system evaluated at the point [% , 0] is given by:

Let ¥,=¥,
¥2=2 ¥1¥>
Hence in matrix form:
yi|_10 1 [571] 50 = T (T =T
2=18 1B 70=1 5@=1
p=-1 a-=1 xe [0, (7]

In order to solve the above fuzzy BVP consider the first non-fuzzy BVP:

[ l [ ] 1,(0) =0, 1,(0) =1 ,

and hence the eigenvalues of A are givenby A; =0, 4,=1
Therefore to find the corresponding eigenvectors

Let Au= Au

Then

[0 el ofz]

This implies

u,=01; = u=r, r=1
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a3 2 [}

Hence

p:[l 1 , eAt=peatpl
[ 0 — 1

Therefore
e?'=diag (e™)

And so
1171[e% 0 0 —17[Uoq
00”0 e‘][O 1][ﬁ02]
_[1 e‘] [ 0o - 1] [ﬁm]
Lo ollo Uy
0o -1 + e [uo1]
0 Up2

a(t)=|

Hence

Uy () =08y By(t) =—1 + e’ Toy

T, (t) = 0 iy (1) = 0 Tpy

= V1-a g =Vi-a a=1
Uy,= IVli-a a02:1"'\/m

Now, consider the second nonfuzzy BVP:

; ] (9 ARE] »@=1 .%0=0

and hence the eigenvalues of A are givenby A, =0, 4,=1

Therefore to find the corresponding eigenvectors
Let Av= Av

Then

V=71 = Vi=r, r=1

wi=[y) 7= [3]
Hence

_[11 At — pat -l
p—[1 1)@ =pe?'p~, where
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e

Therefore
e?'=diag (e?")

and so

ol 1 1)l5 3 4l
DA | K
[0 ollo]

Hence:

Ti(t)=-cost By Dy (t) =-sint Vg,

U, ()=sint oy T (1) =-cost Tz

Vp=1lVli—a Vgp=1+V1—a) , a=
Uo2= “V1-a 502 =Vi-«a

Now A= ﬂ:ﬁl (t):—1—01701
- uq(t) 0201

/—1_?—51 ) _—1- 0302
UAe(t) —1+et 02

Since the general solution of fuzzy boundary value problem using the shooting method is given by:
Y(®= V(@O +Au), ¥ =V(©) + AT (L)

The results could be compared with the crisp solution at =1, and for t :g, to given
YE)=VE)+aui)=-1

7(5) =vE+au@) =-1.

Where the crisp solution at t :g is given by:

TT.
yG)=-1.
Also, we can make a comparison between the crisp solution and fuzzy solution with a=1 as in the
following Fig. (1)

o
s .
1

Solution (y)

o

o
(]

-1
—e—Crisp
-1.5- —&— Approximate

Fig. (1) : A comparison between crisp and fuzzy solution with , a=1
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Example (5.2):
Consider the second order fuzzy differential equation of boundary value problem:
y =-y,y(0)=1,y(1)=-1,x€[0, 1]
Let ¥,=¥.
¥2= 1
Hence in matrix form:

yil_10 1 [371] S (M =T (1) =T
2=19 SR 701 nw=1
In order to solve the above fuzzy BVP consider the first non-fuzzy BVP:

ﬁl = 0 1 [ﬁl] u =0 13i =1
L‘iél =17 o n| MO=0 %0=1
and hence the eigenvalues of A are givenby A; =i, 4,=-1i

Therefore to find the corresponding eigenvectors
Let Au= Au

Then
EHHEH
-1 o0ll[u, u,

This implies

U=ty = U=r, r=1
w=[; ][0l +1[3]

Hence

01 .
p=[] o - €"=pep’

1 0-1
P '[ -1 0]
Therefore
oit= gat [cosbjt — sinbjt ]

sin bjt cos bjt

And so
—,n_[0 17[cost — sint 0-1 l~lo1]
u(t)—[ 10 ] [sint cos t] [ — 0] [ﬁoz
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_ [sint cost ] [ 0
cost —sint —
_ [—cost — sint [ﬁm]
sint —costl[Uy;
Hence

"ol

fiy(t) = -cost Ty, q(t) = -sint wpy

Ez(t) = sint Up;

Ug,= V1-a 501 =V1-a

EOZ: 1‘\/m 502=1+\/m

Now, consider the second nonfuzzy BVP:

[ ] ™ ] $1(0)=1 ,5,(0)=0

and hence the eigenvalues of A are givenby A; =i,
Therefore to find the corresponding eigenvectors

Let Av= Av
Then

o/ o] )
0llv, )
this implies

V=Y = vi=r, r=1
w=[i=ol +1[3)
Hence

p:[o 11 eAt=peitp™ where

[ 0 — 1
Therefore
oit= at[cosbit — sinbjt ]
sin bjt cos bjt]
and so
~m_[ 0 171[cost —sint ]
v(t)—[ 10 Hsint cos t!

:[sint cost [ 0

cost —sint
_[—cost —sint [‘701]
sint — costl |V,
Hence:

i, (t) = -cost g

27l

]
-1 0!V

Ti(t)=-cost By (L) =-sint Vg,

Vo1
Vo2

a=1

|
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Uy (D)=sint ¥y, Dy (t) =-cost gy
Vo1= 1Vl —«a Vp1=1+V1—a) , a=1
Vp=Vl-«a %02: Vli-a

Now A= E:il(t):—1+cos£i§01
' 1 (3) —cost 01

z_ﬁ—%l(t) _—1+sint 502
T W) —sint#i02
he results could be checked by comparing them with the crisp solution at a=1 , and fort =1, we

have

y(t) = v(t)+Au(t) =-0.9992.

y() =V (t)+ AU(t) =-0.9992.

Where the crisp solution att = 1 is given by y(1) = -1

Also, we can make a comparison between the crisp solution and fuzzy solution with a=1 as it is
illustrative in Fig. (2)

{5 —e— Crisp

—=— Approximate

0.5 1 1.8
05
44

154

Fig. (2): A comparison between the crisp solution and fuzzy solution at a=1.

As a boundary value for the FBVP of 8 we take a fuzzy number x,€E", such that
[xo]“={(x}, 8) R (x}_x{°)+ (2§ _x§°)’< 1§ (1 — @)%}
x°eRx¥eR, ry>0.

Using Nguyen's theorem [20], we see that the a level sets of the fuzzy solution u (t) will
be convex compact sets in R?, their boundaries having the following parametric representation:

X 4y°= LM (Y r>0

(x_x%) + (_x°)’ < 1§ (1 — @)?

x9_x%=r (a) cos@

x9_x2%=r (a) sin@

x9=r (a) cos0+x?°

x3=r (a) sin9+x9°

And hence the general solution of the FBVP using the shooting method is given by:

x1(6,8) = v1(0) *Aus(0), %6, 0 = Ty(0) +A (1)
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x1(0,t) =-cost(r (a) cos@+x3%)- sint(r (a) sind+x3°)

X2(8,t) =sint(r (a) cos0+x3°)- cost(r (a) sin6+x3°)
[xo]*={(x?, x9) ER?| r¥(ax) cos*O + r*(a) sin?0
< r? (a) (cos*0 + sin%0)
<rf(@ <r¢(1-a)
r@= ro(l—a) 0<a<l |, 0<0<2m
Now, consider the fuzzy boundary values

x =-1, 22 =1,x8°=x9°=0, ry=2 and a €[0, 1] .for t = 0,0.1,0.2,...,1 the approximate
solution for a=0, 0.2, 0.4, 0.6, 0.8 are obtained in tables 1 to 5.

Table 1: the approximate solution x;(8,t) and x,(6,t)

a=20.2
T 0=0° 0=90° 0=180° 0=270° 0=360°
X1 Xz X1 Xz X1 Xz X1 Xz X1 Xz
0 1.6 0 -1.6 0 -1.6 0 1.6 0 1.6 0

0.1 | 1.598 | 0.003 | -1.598 | 0.003 | -1.598 | 0.003 | 1.598 | 0.003 | 1.598 | 0.003

0.2 | 1.598 | 0.005 | -1.598 | 0.005 | -1.598 | 0.005 | 1.598 | 0.005 | 1.598 | 0.005

0.3 |1.598 | 0.008 | -1.598 | 0.008 | -1.598 | 0.008 | 1.598 | 0.008 | 1.598 | 0.008

0.4|1.598 | 0.011 | -1.598 | 0.011 | -1.598 | 0.011 | 1.598 | 0.011 | 1.598 | 0.011

0.5|1.598 | 0.014 | -1.598 | 0.014 | -1.598 | 0.014 | 1.598 | 0.014 | 1.598 | 0.014

0.6 | 1.598 | 0.016 | -1.598 | 0.016 | -1.598 | 0.016 | 1.598 | 0.016 | 1.598 | 0.016

0.7 | 1.598 | 0.019 | -1.598 | 0.019 | -1.598 | 0.019 | 1.598 | 0.019 | 1.598 | 0.019

0.8 | 1.598 | 0.022 | -1.598 | 0.022 | -1.598 | 0.022 | 1.598 | 0.022 | 1.598 | 0.022

0.9 | 1.598 | 0.026 | -1.598 | 0.026 | -1.598 | 0.026 | 1.598 | 0.026 | 1.598 | 0.026

11.598 | 0.027 | -1.598 | 0.027 | -1.598 | 0.027 | 1.598 | 0.027 | 1.598 | 0.027
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Table 2: the approximate solution —(x_1(6,t)) and ~(x_2(6,t)
a=0.4

T 0=0° 0=90° 0=180° 0=270° 0=360°

X1 Xz X1 Xz X1 Xz X1 Xz X1 Xz

0 1.2 0 -1.2 0 -1.2 0 1.2 0 1.2 0

0.1| 1.199| 0.002 | -1.199 | 0.002 | -1.199 | 0.002 | 1.199 | 0.002 | 1.199 | 0.002

0.2| 1.199| 0.004 | -1.199 | 0.004 | -1.199 | 0.004 | 1.199 | 0.004 | 1.199 | 0.004

0.3| 1.199| 0.006 | -1.199 | 0.006 | -1.199 | 0.006 | 1.199 | 0.006 | 1.199 | 0.006

04| 1.199| 0.008 | -1.199 | 0.008 | -1.199 | 0.008 | 1.199 | 0.008 | 1.199 | 0.008

05| 1.199| 0.010 | -1.199 | 0.010 | -1.199 | 0.010 | 1.199 | 0.010| 1.199 | 0.010

0.6 | 1.199| 0.012 | -1.199 | 0.012 | -1.199 | 0.012 | 1.199 | 0.012 | 1.199| 0.012

0.7 | 1.199| 0.014 | -1.199 | 0.014 | -1.199 | 0.014 | 1.199 | 0.014 | 1.199 | 0.014

0.8 1.199| 0.017 | -1.199 | 0.017 | -1.199 | 0.017 | 1.199 | 0.017 | 1.199 | 0.017

0.9 1.199| 0.019 | -1.199 | 0.019 | -1.199 | 0.019 | 1.199 | 0.019 | 1.199 | 0.019

1| 1.199 | 0.020 | -1.199 | 0.020 | -1.199 | 0.020 | 1.199 | 0.020 | 1.199 | 0.020
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Table 3: the approximate solution x4(0,t) and x,(0,t)
a=20.6

T 0=0° 0=90° 0=180° 0=270° 0=360°
X: X2 X: X2 X: X2 X: X2 X: X2

0 0.8 0 -0.8 0 0.8 0 0.8 0 0.8 0
01| 079 | 0002| -0799 | 0002 -0799| 0002| 0799 | 0.002 | 0.799 0.002
02| 0799 | 0002| -0799 | 0002 -0799 | 0.002| 0799 | 0.002| 0.799 0.002
03| 0799 | 0004| -0799 | 0004 -0799 | 0.004| 0799 | 0.004 | 0.799 0.004
04| 079 | 0007| -0799 | 0007 | -0799| 0007 | 0799 | 0.007 | 0.799 0.007
05| 0799 | 0007| -0799 | 0007 -0799 | 0.007| 079 | 0.007 | 0.799 0.007
06| 079 | 0008| -0799 | 0.008| -0799| 0008 | 0799 | 0.008 | 0.799 0.008
07| 0799 | 0001| -0799 | 0001 -0799 | 0.001| 0799 | 0.001| 0.799 0.001
08| 079 | 0011| -0799 | 0011 | -0799 | 0011 | 0799 | 0011 | 0.799 0.011
09| 0799 | 0012| -0799 | 0012 -0799| 0.012| 079 | 0012 | 0.799 0.012
1| 0799 | 0014| -0799| o0014| -0799| o0014| 0799 | 0014 | 0.799 0.014

Table 4: the approximate solution x;(6,t) and x,(6,t)
a=0.8

T 0=0° 0=00° 0=180° 0=270° 0=360°
X: X2 X: X2 X: X2 X: X2 X: X2

0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0
00| 0391| 0001| -0391| 0001| -0391| 0001| 0391| 0001 | 0.391 0.001
02| 0391| o0001| -0391| 0001| -0391| 0001| 0391| 0.001| 0.391 0.001
03| 0391| 0002| -0391| 0002| -0391| 0002| 0391| 0002 0391 0.002
04| 0391| 0003| -0391| 0003| -0391| 0003| 0391| 0003 | 0391 0.003
05| 0391| 0004| -0391| 0004| -0391| 0004| 0391 0004 | 0391 0.004
06| 0391| 0004| -0391| 0004| -0391| 0004| 0391| 0004 | 0391 0.004
07| 0391| 0005| -0391| 0005| -0391| 0005| 0391| 0.005| 0.391 0.005
08| 0391| 0006| -0391| 0006| -0391| 0006| 0391 | 0006 | 0.391 0.006
09| 0391| 0006| -0391| 0006| -0391| 0006| 0391 | 0006 | 0.391 0.006
1| 0391| 0007 -0391| 0007| -0391| 0007| 0391| 0007 | 0391 0.007
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Table 5: the approximate solution x;(6,t) and x,(6,t)
a=0

T 0=0° 0=90° 0=180° 0=270° 0=360°

X1 X3 X1 X3 X1 X3 X1 X2 X1 Xz

0 2 0 -2 0 -2 0 2 0 2 0

0.1 1.998| 0.004 | -1.998 | 0.004 | -1.998 | 0.004 | 1.998 | 0.004 1.998 | 0.004

0.2 1.998 | 0.006 | -1.998 | 0.006 | -1.998 | 0.006 | 1.998 0.006 1.998 | 0.006

0.3 1.998 0.01 | -1.998 0.01 | -1.998 0.01 | 1.998 0.01 1.998 0.01

04| 1998 | 0.014 | -1.998 | 0.014 | -1.998 | 0.014 | 1.998 | 0.014 1.998 | 0.014

0.5 1.998 | 0.018 | -1.998 | 0.018 | -1.998 | 0.018 | 1.998 0.018 1.998 | 0.018

0.6 1.998 0.02 | -1.998 0.02 | -1.998 0.02 | 1.998 0.02 1.998 0.02

0.7 | 1.998 | 0.024 | -1.998 | 0.024 | -1.998 | 0.024 | 1.998 | 0.024 1.998 | 0.024

0.8 1.998 0.03 | -1.998 0.03 | -1.998 | 0.03 | 1.998 0.03 1.998 0.03

0.9 1.998 | 0.032 | -1.998 | 0.032 | -1.998 | 0.032 | 1.998 0.032 1.998 | 0.032

1| 1.998 | 0.034 | -1.998 | 0.034 | -1.998 | 0.034 | 1.998 | 0.034 1.998 | 0.034

6 - Conclusion

In this paper, we applied the pyramidal
fuzzy numbers to solve fuzzy boundary value
problems under generalized shooting method
another application of fuzzy boundary value
problems. This method can be extended for an
nth order fuzzy boundary value problem. In
the future, and following the ideas, we plan to
consider the equations y’ (t) = -ty (t), or y' (t) =
c1 Y*(t)+c, with ¢y ¢, arbitrary constants.
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