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Abstract:

In this paper, applying Laplace transform technique will be
discussed and to solve partial differential equation with boundary
conditions that have significant importance in engineering and physical
applications, where two kinds of partial differential equations were
solved using these transformations on both sides of the equations then
applying the boundary equations to find the general solutions.

Keywords: Laplace transform, Partial Differential Equations, Boundary
Value Problems.

AadAll

s 4 saall da gyl il il Ja b oY Ol sad aladiul st Gaalliie b
aanigh) Rkl & 4saa¥) 3 4 Jall adialdil) Vsl gl gl iany b el
sl el aladin) e aslaliil) 4 el bl e cpe 5 Ja a5 Cuneanily Sl
el Jal) ala apnganll da ) Gulai 5 c¥aladl) ik e

s sonll Aad ISl edd jadl Aloalinl) eV alaal) (DY U g3 rdaliial) cilalsl)

Introduction: equation, initial value problem and

) ) boundary value problem in partial
In various areas of science ) , )
_ i _ differential equations.
and engineering we might use

Laplace transformation technique There is no general method
to solve our problem because it is to solve P.D.E [6], but some
very powerful mathematical tool boundary value problem might be
[7]. It can solve initial value faced, that can be solved using
problem in ordinary differential differential transformation [4], and,
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Laplace transformation method is
applied to the time domain [3]. It
can solve O.D.E. and P.D.E. because
it can transfer O.D.E. to algebraic
equation as well as transferring
P.D.E. to O.D.E,
Laplace transformation when facing

furthermore,

an infinite domain, it can handle
the boundary condition effectively

[5].

1. Laplace transformation

technique

The immediate Laplace
transformation formula for a
function f(t) be a function
defined for (0 <t < ),
then f(t) will have the

following Laplace integral:

J, f(De=stdt,
which  will be

L) 1]

1.1 Theorem 1: if f(t) have
an exponential order and

denoted

is piecewise regular on
[0,00) and exponential
order, then for any value
of s which greater than
the abscissa of
convergence of f(t), the
Jy fe=stat

converges, (1).

integral

1.2 Definition: The improper
integral fOOOF(s, t)dt is

said to be converge
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uniformly over a given
set S of s values of a
given any & > 0, there
exist a number B,
depending on & but not

s, such that

|J, F(s,t)dt| <e
for b > B and all sin the set
S

1.3 Theorem 2 if f(t) is
piecewise regular and of
exponential order with
abscissa of convergence
ay, then for any number
So > @,

Lf ()} =

J, f(De=stdt
Converges uniformly for
all values of s such that
So > Q.

J[1].

2. Some Properties of Laplace

Transformation [2]

21 L is a linear
transformation where the
sum between functions will
be:

J, et af () +
Bg(D)]dt =
a fooo e Stf(t)dt +

B[ Bg(Ddt
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both

integrals converge for s > c.
L{af (t) + fg(O)}dt =

al{f(©)}+ BL{g(D)} =

aF(s) + BG(s).

2.2 Theorem: Transform of a

Whenever

Derivative [2]
If £ f, ., f® Dare
continuous on [0, )
and are of exponential
f(n) is
piecewise-continuous
on [0, ), then
L[F™(@)] = s"F(s) -
s"f(0) = s"72f7(0)
F0(0).

order and if

2.3 Example: consider the
following problem:

fie —v*f =0
f(0)=0
ft(o) =v
Solution: Apply theorem

2.1
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L(frr —
v?f) = L(0)

We know that
Lis linear

Lftt +
viLf =0

s2F(s) —

sf(0) — f(0) —v*F(s) = 0
Substituting
initial conditions

s?F(s) —v —
v?F(s) =0
(s* -
v3) F(s)=v
F(s) =5

According to
table (1) £L7'F(s) = sinh vt
After solving this example, it
can be noticed that the true
difficulty the
application of Laplace

regarding

transform is to obtain on
inversion criteria.
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Table 1: table of Laplace transforms

f(x) F(x) a(s
> qa)
1 1 1 0
S
2 eSt 1 a
s—a
3 [t"(n=12,..) n! 0
STl+1
4 t"e%(n n! a
=12,..) (s —a)n*1
5 sin kt k 0
s2 + k2
6 cos kt S 0
s2 + k2
7 sinh kt k |k|
SZ _ k2
8 cosh kt S |k|
SZ _ k2
9 e~ * sin kt k —a
(s+a)?+
10 e~ cos kt k —a
(s+a)?+
11 NG Vi 0
2 S3
12 1 Vr 0
Vit r

Application

Example 3.1: Let the mathematical model of the displacement
f(x,t) of point in a string that has a length L at rest with fixed
ends, and a force Fysinhwt., was applied at initial

PF_ 20 /

Sz = €75 T Fosinh wt
3.1

f(0,t)=0, t>0
3.1.1
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f(L,t)=0, t>0

3.1.2
f(x,00=0, 0<x<L
313
M —p, 0<x<lL
at
314

To begin, take the Laplace transform equation to obtain

s?F(s) = sf(0) — f(0) = c? L{f}+F

52+w2

By applying the boundary conditions ( 3.1.1 ) and ( 3.1.2 ), the
following equations becomes:

2 _ 2 62(x,s) w
s“F(x,s) = o) et O0<x<L
Or
0%F Fow
axz  c2T ft(o) Cz(sz+w2) 0<x<L

This is now an ordinary differential equation that is subject to the
transformed condition:

F(0,s) =0
3.2

F(L,s)=0
3.3

The homogeneous solution to this equation is
S, _S,
F(x,s) = Aec” + Be ¢

A particular solution can be found by assuming that F.x =
0,.This will give
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F,w
s2(s2 — w?)

F(x,s) =

Therefore, the general solution will be:

F,w

S S
F(x,s) = Aec® + Be ¢ +
(x,5) s2(s% — w?)

Applying the boundary conditions ( 3.2 ) and ( 3.3 ), the following
equations are obtained:

0=A+ fow 0= Aec® + Be ¢ + fow
= , = Aec e ¢
s2(s? — w?) s2(s? — w?)
d=— F,w
s2(s2 — w?)
B = F,w e% B F,w
s2(s? — w?) s?(s? — w?)
Hence,
F,w s F,w _s
U(x,s) = — ec” + e &
(x,5) s?2(s? — w?) s2(s? — w?)
S\ Sy F,w
><( 1+ ec )e c +52(52—w2)
Example 3.2

Now, consider what might be referred to as one dimensional wave
problem:

0%u 0%u
w(x,t)zczﬁ(x,t)+cos(nx), 0<x<1, t>0

u(x,0) =0, u(x,0)=0
u(0,t) =0, u(l,t) =0

By applying the Laplace transform for the equation, and the
conditions must be used, to get
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d?U COS X
W(x, s) = s?2U(x,s) — su(x,0) — u.(x,0) —

CoSTTx

=5s%2U(x,s) —

The ordinary differential equation, which is non homogeneous
with constant coefficient must be solved.

d?U 5 COS TTX
W(x,s) —s“U(x,s) =

Once again
U(x,s) = Up(x,s) + Upy(x,5)
Where U, (x,s) is the general solution of the homogeneous

problem:

Un(x,s) = cie5* + c,e™*

Where U, (x,s) is particular solution of the non-homogeneous
problem:

Uy(x,s) = Acos(mx) + B sin(mx)

Use the undetermined coefficient method to find A andB,where;

Tx U,(x,s) = —mAsin(mx) + nB cos(mx)
2
o? Uy(x,s) = —m*A cos(nx) + m?B sin(mx)
Therefore

2

% Up(x,s) = s*U,(x,s) = (—m* — s*)[A cos(nx) + B sin(mx)]

cos(mx)

N

Which will lead to the following:

—(s?2+n®)B =0 and — (s> +m?)A = —%,
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So that
B=0 A= 1
’ s(s?2 + m?)
Where;
cos(mx)
U,(x,s) =
p(0,5) s(s?2 + m?)
And
U(x,s) = ces* + c,e ™% + —cos(nx)
’ 1 z s(s? +m?)

Next by applying the BCs to find c;and ¢,

1
c = m ; ¢,=0
. es* cos(mx)
s ulxs) = s(s?2+m2)  s(s?+m2)
Conclusions: equation in one or two
dimension.
Laplace
transformation technique
is a practical tool to solve
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