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Determination of velocity, pressure and heat transfer of a steady state flow of
third order fluid using homotopy analysis method
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Abstract:

This paper, focused on a steady flow of non-Newtonian fluid of three order in a porous walls
vertical channel. The equations were used to describe it’s state of motion and the energy equations. The
velocity, pressure variations and heat transfer profiles investigated by using Homotopy Analysis Method
and examining qualitatively the effect of non-Newtonian parameters (a, B,y) which are dimensionless
numbers, Reynolds number (Re), Hartmann number (M), and Peclet number (Pe) on these values. Finally
varies numerical simulations were taken to enhance the analytical results.
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1.Introduction:

A lot of practical applications in real life are
depending on fluid mechanics which is an
interesting and exciting subject. These
applications ranging from spacecraft, planes,
vehicles to microscopic systems, unlike the other
study materials of freshman and sophomore-
level such as mechanics engineering, and
physics. The flow curve of non-Newtonian fluid
is (shear stress vs strain) non-linear or does not
pass across the origin, in other words, shear
stress divided by strain, isn’t steady at a
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provided pressure and temperature but it’s
reliant on conditions of flow like a shear rate,
flow geometry, etc. and in some cases even on
the history of kinematic of the fluid component
under consideration. Such materials could be
suitably assembled into three common classes.
The flow across the medium of porous has
uncounted applications in engineering and
science like chemical reactors, drainage,
petroleum, chemical engineering, and irrigation
[17]. The first Magnetohydrodynamics (MHD)
Bingham plastic and power law fluids study was
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introduced by[1]. A fascinating study for the
Maxwell fluid of hydrodynamic in a channel
of porous was presented in[2]. MHD is one of
the important study areas that has raised in the
engineering sciences in the 21* century. MHD
includes electrically conducting fluids that
interact with magnetic fields.[3]solved the
transformations presented by substituting
thermodynamically  the  second  grade
compatible fluid instead of a Newtonian fluid.
Baris used an old analytical method which is a
conventional perturbation  solution.[4,5]
discussed the third-grade unsteady flow in a
porous space. They utilized the modified
Darcy’s law in their fluid flow modelling
study so,[6,7,8] have studied the transfer of
heat through an unsteady expanding permeable
surface with specified wall temperature. They
applied the Homotopy Analysis Method
(HAM) to achieve an analytic solution. HAM
was first proposed by[9].[11] ,[16]have

studied the flow of thin-film unstable
micropolar fluid over a medium of porous in
the presence of MHD. To solve this problem,
they utilized numerical techniques. They
presented graphs for the effects of the various
modelled parameters in their work.[10] have
utilized HAM to find the heat transfer,
velocity and pressure variation values and

analytic the effect of non-dimensionless
parameters with state flow in a Newtonian
fluid have studied the solution of analytic for
the flow of MHD third-order fluid and heat
transfer through an expansion sheet. This
paper is concerned with the formulation of the
problems in which the governing nonlinear
equations that describe the flowing nature are
modelled. HAM is utilized to solve the
problems under consideration. The
implementation and results of this work are
given by MATLAB®.

2. The Model:

The considered model for this paper is the
third-order fluid steady in a vertical channel
with porous walls. At y=D and with regular
velocity U, a fluid is injected over a vertical
pored plate. The fluid flowed through another
vertical plate of impermeable at y=0. It is
outflowing over the opening plates as the
gravity action over the Z-axis. D is the
distance between the walls and it’s a small
value against the plates dimensions as shown
in Figure (1), i.e., L>»D. The impacts of the
edge can be neglected [14].

The Cauchy tensor of stress in the case of
third-order fluid is related to the equations of
momentum in the following way [13]:

T =—-PI + uAl + alAZ + azAlz + ,83 (tTaSAlz)Al ' (1)

where 4; = 7V + (V)T

_dA

A gt 3
27 at

+ A, (VW) + (V)T 4, ,

where W, aq, a5, and 3 =0 .
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Fig. 1. Fluid flow in a vertical channel



where P represents the pressure, V represents the
vector of velocity, V is the operator of the
gradient, «;(i =1,2),(B;) are the material
moduli of fluid, d/dt is the material derivative,
and A4;(i = 1,2) are the two first Rivilin Eriksen
tensor. For a4, a,= 0 and S5 equation (1) along
with (2) descries of Newtonian fluid [10] , and if
just Put B3 =0 equation (1) along with (2)
descries the state of second-order:

v =0,

(4)

p(VVV) = VT + (J X B),
(5)

pCp(VVT) = KAT

(6)

where the continuity, momentum and energy are
represented by equations (4), (5) and (6)
respectively. The density is p and (J X B) is the
Lorenz force vector. The fluid is supposed to be
stable and laminar. Substituting the stress tensor
T from (1) into (5) yields:

p(VVV) = —VP + u(v?V) — ouB? .

(7)

The components of velocity indicated by (u, v,
w) are corresponding to X, Y, Z direction
respectively [8], to find a compatible solution
with the continuity of the formula :

w=2fm)w=-Ufmw="Lh@m)

(8)

where n =y/D and the prime denoted the
differential with respect to n. The velocity field
conditions of the boundary are:

fO)=0,f(1)=1f(0)=07"(1) =
0,f"(0) = 24,f"(0) = —48 9)
It foIIows from (7) and motion equation that:
= Re(ff" — (FON) +f" — Mf' +
a(=ff"" +2f'f" +3(f")) +
BQRUMD+y@f " +8f""
(10)
‘;_5 — _Reffr _H,TU[f” + a(ff,” + 6frfu +
2 SDLZfoHI) +
B (8flf” +2Di2fllflll) +,y(xflfll +flfll)] ,
(11)
where Reynolds number (Re), (M) is the
Hartmann number, and o, fand yare the
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dimensionless numbers, are defined
respectively:
Re=2"2 m=2% I p= and
Uﬁu ' u' uD
f— 3

Integrating (11) with respect to n, we have got
the equation:

PCom)= =52+ [—f +a(ff +
3(F)? + 5 (F"?) + B (5 (F )2 +
4(f2) + ¥ (52 + (3] + 6()
(13)
Where G(x) is an arbitrary function. If the

equation (13) is a differentiable regarding x
yields:

=B ar M + 2B + 5y (f)?] +
= (14)
Combining (14) and (10)
9 B (Re(ff "~ ()R- Mf +
G f " + 26 7 307 + BRUTY) +
y(Af "+ 8] = [ a(f)? +
2B +5v(FY?

(15)
And
L= Re(ff = (D) -Mf+
a(—ff"" +2f'f" = 3(F"ND) +y(5(F)? +4
f”+8f””)] ,
(16)

The quantity in (16) should be independent of 7.
Thus, the following equation for f is:

f+Re(ff " = (f)?) = Mf' +a(=ff"" +
2f " =3 +y (G 4 f
8f'")y=S

(17)
Where the value of S arbitrary constant is:
S =f""(0).
(18)

Now differentiating (17) with respect to 7
yields:

f+Re(ff " = (f)?) — Mf' +a(—ff"" +
2f'f" =3(FND +y (G2 + 4 f 1+
8f””)]

(19)

by using (17), G (x) can be formulated as:



U 2
G(x) = ”ZD’; S+S,,
(20)
Where C, is the integration constant. Adding
G (x) from (20) to (13):
PGom) = =52+ [-Mf +a (ff"+
2 2
32+ 2 (F2) + B (S (2 +
2
4(f2) +y (U2 + 2|+ 555+ S
(21)
From (21), the variation of pressure can be

obtained in a dimensional form in x and y-
direction as follows:

_P(O-)_(')_ 1 "
P() ==L 5= - (da(f) +

BUNHY S (F)2+ £ (0)(5)?

(22)

_ 2
P(y)= 2PNy L (f 4 a(ffr 4

pU? 2
3(f D)) +4B(f ) +v(fH?)  (23)
The linear operators and initial guesses are
chosen as the following:
T=To + (T1 — To)O(m).
(24)
Where T, and T; are the temperatures of
impermeable and plates of porous respectively,
with a constant value. Equations (8) and (24) are
substituted into (6) and that is lead to the
following equation:
0" + Pefo’ =0,
(25)
Where Pe =pUDcp/k is referred to as Peclet
number (Pe). Equation (25) is solved depending
on these boundary conditions:
6(0)=0,0(1)=1
(26)
3. Solution Using HAM:

HAM is used to solve (19) subject to the
conditions of the boundary (9).

fom) = 3n* = 2n3.

(27)

The initial guess approximation for f(n) is:
Li(f) = f".

(28)

As the property of the auxiliary linear operator
is:
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L(c; + con+csn?+cm® +csn®) =0 .
(29)

And ¢;(i = 1,2,3,4,5) are constants. Let
pe [0,1] and h indicates nonzero ancillary
parameters, therefore, the following equations
are formed:
80)— P)Li(f(m;p) — fo(m)] = ph N1 [f(; )],
fO;p)=0,f'(0;p) =0,f(L;p) =
Lf'(Lp)=1.

(31)

Ni[f(n;p)] =

f"" ;) + Re(f" (m; ) f (0; p) —
f'ao)f"(;p)) — Mf" (m;p) +
a(=fp)f"" (;p) + f (s p)f"" (i p) —
8f"(m;p)f"" (mp))=0.

(32)

For p=0 and p=1:

fmp)=fom), f(m1)=1f(@).

(33)

When the value of p increases from 0 to 1 leads f

(n; p) change from f,(n) to f (n). By using
Taylor's series and using (33):

fmp) = fo) +Xm=1 fnMP™, frn(m) =

1 a™(f(;p))

m!  9p™ ! (34)
f) = fom) + Zm=1fm(®),
(35)

The m -order equations of deformation are:
LIUm () — Xinfm-1 ()] = hRfm(T]), m=
1,2, ..... (36)

The boundary conditions are:

fm(0) = f,m(o) = (1) = f,m(l) =

0, f”m(O) =6

37)

Where R/, () = f""+ReX Lo (frn-1f""'i =
flm_lflli) _ Mf”m_l +

aCE (—fmea " i+ frmea f" i —
8" f DY G et + A S+

8f”"m_1)] )

59 0 <1
ms= 1,

Xm = {1 m> 1.

(39)

To find the solution of third-order deformation,
we shall apply the symbolic software
MATLAB® up to the first few orders of



approximation. We found the solution up to
third-order approximation and they are:
F1=((3**h)/280-(Re*h)/140)*n"8+((Re*h)/35-
(3*y*h)/70) *n\7+((M*h)/60-(Re*h)/20-
(8*a*h)/5+ (y*h)/20)*n"6+((24*a*h)/5-
(M*h)/20-(2*p*h)/5) *n"5-2*n"3+3*n"2
F,=((3**h)/280-(Re*h)/140) *n"8+((Re*h)/35-
(3*y*h)/70) *n\7+((M*h)/60-(Re*h)/20-
(8*a*h)/5+ (y*h)/20)*n"6+((24*a*h)/5-
(M*h)/20-(2*y*h)/5)*n"5 - 2*p"3+3 %42
F3=n"6*((M*h)/60-(Re*h)/20-(8 *a*h)/5+
(7*h)/20) -y™5*((M*h)/20-
(72%a*h)/5+(2%y*h)/5+
(32%"2*h"2)/5+(128*y"3*h"3)/5+
(16*M*y"2%h"3)/5-(1536*a*y"2*h"3)/5+
(4*M*y*h"2)/5-(576*a*y*h"2)/5)+

nNT*(193*¥ M2 %a*h"3)/277200-
(M73*h"3)/6652800-(M"2 *y*h"3)/277200-
(223 *M*Re*a*h"3)/184800+(M*Re*y*h"3)/110
88 +(M*Re*n"2)/46200-0+(M*y*h"2)/420+
(204 %02 *h"2)/35-(311 *a*y*h"2)/560+
(3*Re*a*h"2)/112+(5%"2*h"2)/56-
(17*Re*y*h"2)/280+(3 *y*h)/140-(Re*h)/70)+
3¥2-2%n 3+ 7 *((Re*h)/35-(3*y*h)/70)-
n"8*((Re*h)/140-(3*y*h)/280)-n"5 *((M*h)/20-
(24%a*h)/5 (2*y*h)/5).

4. Converging an equation of temperature:

The equation of temperature in this field as
below:

HAM is used to solve equation (25) subject to
the boundary conditions (26). The linear
operators and initial guesses are chosen in the
following:

om =n .

(40)

While the initial guess approximation for

0(n) is:

L,(0)=06".

(41)

As the auxiliary linear operator has the property:
L(c;+¢cn) =0 .

(42)

And ¢; (i = 1,2) are constants. Let pe [0,1] and
h referred to the non-zero ancillary parameter.
Therefore, zeroth-order equations of
deformation are:

(1 —p)L1(0(m;p) — 6o( M] = phaNo[6(m; p)]
, (43)
6(0;p)=0,0(L;p) =1,
(44)
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N [6(n;p)] = 6" (s p) +

Pe(f(n; p)6'(n;p))=0 ,

(45)

for p=0 and p=1:

0(n;0) = 6o(n), 6(n;1) =6(n) .

(46)

When p increases from 0 to 1 then

6(n; p) change from 6, (n) to 6(n). By using
Taylor's series and (46):

6(n; p) = Oo() +Xn=16m(@MP™, On () =
iam(9(n:p)) (47)

m! op™ !
6(n) = 6o(M) + Xm=10m(m), m = 1,2, ...
(48)

The m-order equations of deformation:

LI(Om (1) — XmOm—1(M)] = hRgm(n)-

(49)

The boundary conditions are:

O (0) = 6,,(1) =0,

(50)

where R?,, () = 6" 11 +PeX 0! (fm-10"D)

(51)

_ (0 m<1,
Xim = {1 m> 1.
(52)

To find the solution of second-order
deformation, we shall aplly the symbolic
software MATLAB® up to the first few orders of
approximation. We found the solution up to
third-order approximation and they are:

0; =n - (Pe*h*n"4*(2*n - 5))/20

6, =(Pe*h)/2)-
NA5*((Pe*h”2)/10+(Pe*h)/5)tn 1 1*((M*Pe/2*
h"3)/2640-(Pe*2*Re*h”"3)/2200-
(2*Pe2*oc*h”3)/55+(Pe2*y*h”3)/440)-

N 2*((M*Pe”2*h”3)/15840-
(Pen2*Re*h”3)/2464-
(Pen2*x*h"3)/165+(19*Pe”2*y*h"3)/36960)-
n"8*((Pe”2*h"2)/16-(M*Pe*h”2)/3360+
(Pe*Re*h”"2)/1120+(Pe*oc*h”2)/35-
(Pe*y*h”2)/1120)-n"10*((M*Pe”2*h"3)/1800-
(4*PeM2*oc*h"3)/75+(Pe2*y*h”3)/225+
(Pe*Re*h”"2)/12600-
(Pe*y*h”2)/8400)+n"7*((Pe"2*h"2)/14-
(M*Pe*h”2)/840+(4*Pe*cc*h”2)/35-
(Pe*y*h"2)/105-n"13*((Pe”2*Re*h"3)/7280-
(3*Pe"2*y*h"3)/14560)+m*14*((Pe”2*Re*h"3)/
50960-(3*Pe”2*y*h"3)/101920)-
(Pe*h*n"4*(2*n- 5))/20.
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5. Results:

We will outline and discuss the effect of
dimensionless parameters that govern the
momentum and energy equations upon the
normal, tangential velocities and temperature of

vesicant fluid of third-order in a vertical
channel. All results are plotted by MATLAB®.
Firstly, the axiality parameter h is set to -0.2
andn = 0 to 3. The following results are
observed as mentioned in Table (1) below:

Table (1) represents the results for velocity profile and temperature

Re=34, M=15, a=15 Re=70, M=25, a=20
B=10, y=30, Pe=2.3 6=15, y=65.3, Pe=9.7
n | F"108* 0" Px Py F""10%* 0" Px Py
103* 1017* 1016* 104* 1017* 1018*
0 |0 0 -0.000 | 0.000 |0 0 -0.000 |0
0.2 | -0.0043 | -0.0002 | -0.000 | 0.000 | -0.0025 | -0.0001 | -0.000 | 0.000
0.4 | -0.0060 | -0.0006 | -0.000 | 0.000 | -0.0031 | -0.0002 | -0.000 | 0.000
0.6 | -0.0064 | -0.0008 | -0.000 | 0.000 | -0.0024 | -0.0003 | -0.000 | 0.000
0.8 | -0.0067 | -0.0005 | -0.000 | 0.000 | -0.0005 | -0.0003 | -0.000 | 0.000
1 | -0.0076 | 0.0008 | -0.000 | 0.000 | 0.0026 | -0.0005 | -0.000 | 0.000
1.2 | -0.081 0.0033 | -0.000 | 0.0001 | 0.0083 | -0.0014 | -0.000 | 0.000
1.4 | -0.0045 | 0.0072 | -0.000 | 0.0003 | 0.0194 | -0.0031 | -0.000 | 0.000
1.6 | 0.0131 0.0131 | -0.000 | 0.0008 | 0.0415 | -0.0039 | -0.0001 | 0.0001
1.8 | 0.0669 0.2330 | -0.000 | 0.0013 | 0.0847 | 0.0000 | -0.0008 | 0.0001
2 | 0.2036 0,386 | -0.001 | 0.0031 | 0.1664 | 0.0082 | -0.0039 | 0.0001
2.2 | 0.5120 0.0549 | -0.0017 | 0.0036 | 0.3146 | -0.0055 | -0.0166 | 0.0014
2.4 | 1.1486 0.416 | -0.0128 | 0.0010 | 0.5723 | 0.1485 | -0.0630 | 0.0141
2.6 | 2.3705 -0.983 | -0.719 | 0.0078 | 1.0081 | -0.7225 | -0.2196 | 0.0834
2.8 | 4.5756 -0.6086 | -0.3324 | 0.1749 | 1.6873 | -2.4326 | -0.7086 | 0.3897
3 | 8.3461 -2.0206 | -1.3318 | 1.4341 | 2.7354 | -6.7409 | -2.1236 | 1.5780

Figure (2) shows the M effect on the normal and the tangential velocity components, M has been given
the values of 15, 20 and 25 respectively. The following result is observed: as M increases, the tangential

velocity component range is fixed.
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Fig. 2.a Distribution of velocity f for M = 15

Fig. 2.b Distribution of velocity ffor M =20
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The function which corresponds to the components of velocity has been plotted versus n for Re=10, 34
and 70 respectively (see figure (3)). The velocity is increasing according to the increase in Re.

%108 108

Fig. 3.a Distribution of velocity f for Re=34 Fig. 3.b Distribution of velocity f for Re=70

Figure(4) illustrates the effect of dimensionless parameter a on the normal velocity profiles for fixed

Re=10, M=15 and a=15, 20 and 30 respectively, where the a increasing has a very strong effect on the
normal velocity profile.
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1] 0.5 1 1.5 2 25 3

Fig. 4. Distribution of velocity f for a« =30
The effect of dimensionless parameter y on the normal velocity profiles for fixed Re=34, M=15, « = 15
and y=30, 65.3 and 70 respectively is shown in Figure (5). The increasing of y has a very strong effect on
the normal velocity profile. The velocity will be very high and if the values of and y are set to zero then
the velocity goes to the state of Newtonian fluid [10].
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Fig. 5.a Distribution of velocity f for y=30

Fig. 5.b Distribution of velocity f for y=65.3

Figure (6) shows the temperature profiles of sticky fluid in the porous walls vertical channel. When
Re=34, M=15, a = 20, y = 30 and Pe = 2.3 and 9.7 respectively, the temperature will be decreased.
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Fig. 6.a Distribution of temperature for Pe=2.3

Fig. 6.b Distribution of temperature for Pe=9.7

The effect of y is very strong as shown in Figure (7) because when it's increasing, then the temperature

will be very low in the channel.
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Fig. 7.a Distribution of temperature for y = 30

Fig. 7.b Temperature distribution for y = 65.3

For the variations of pressure in x and y-directions, when Re=10, M=15 and y =30, its obvious that the
variations of pressure will increase with increasing of non-Newtonian parameters «, .
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Finally, the variations of pressure (see Figure (8)) will decrease in the x-direction and the increase in y-

direction when y is increasing.

\Px

o 10"

2.5 3

7 x10"7

i L L .
o 0.5 1 1.5 2

Fig. 8.a Pressure variations in x-direction for y = 30

6. Conclusions:

An approximate analytical solution of 3" order
non-linear differential equations of fluid under
steady flow condition have been studied and
discussed. The paper handled this problem
which are analytically solved by HAM.
According to the obtained results , the following
points can be concluded :

e The velocity, pressure and temperature
distribution are controlled by non-
dimensional parameters (a, 3,v), Re, M,
and Pe.

e The effect of B in the velocity is absent,
but the effect of o and y was very strong.

e The existence of y effect in the heat
equation, which is, in turn, will reflex on
the effect of Pe leading to channel
cooling.

e The influence of yon the pressure with
Xy directions is very low, but the
increasing value of y made a low
increase of the pressure with y-direction
and decreases in the pressure with x-
direction.

e The greatest value of the velocity profile
and the temperature distribution were
obtained whenn = 3.
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