A New Multiple Blind Signatures Using El-Gamal Scheme

Muthanna Abdulwahed Khudhair

Department of computer science, Dijlla University College, Iraq-Baghdad

Tel:-009647706253593
E-mail:- muthanna.khudhair@duc.edu.iq

Abstract

This paper presents a new secure blind signature. In order to secure the blind signature, this scheme generates two blind signatures. Each of the blind signatures has its own blind factors. In addition, the author of the message encrypts the information sent to the signing author by an encryption key generated by El-Gamal cryptosystem, which is considered a strong cryptographic key. This key adds a secure and hidden layer to the message being signed. In addition, the author of the message binds an agreement factor for each type of message and a context that characterized the type of message signed. This method provides the most important properties for a secure blind signature.

Keywords: Blind Signature, Message Context, Agreement Factors, El-Gamal cryptosystem.

تقام هذه الورقة البحثية طريقة امنة للسرية لللنوقيع الاعمى . مـن اجل تـــمين امنيـة اكثر للتوقيع الاعمى ، تولد هذه الطريقة نوقعين اعمى . يمتلاك كل نو ع من التوقيع الرقمي معـاملات عميـاء. اضافة الى هذا ، يقوم مؤلف (ماللك) الرسالة بتشفير المعلومات المرسلة الـى مؤلف نو قيع وذلك بو اسطة مفتاح تشفيري متولد بنظام الـ EL-Gamal والذي يحتبر مفتاح تشفيري قوي . سيضيف هذا المفتاح طبقة امنة ومخفية للرسالة المطلوب نوقيعها . علاوة علـى ذلك يـربط مؤلف الرسـالة معامل انفـق لكل نـو ع مـن الرسـائل ومحتوى يميز نـوع الرسـالة المطلوب نوقيعهـا ـ تـوفر هذه الطريقة معظم الخصائص المطلوبه لتوقيع اعمى امن .

1. Introduction

David Chaum introduced the concept of blind signatures. The aim is to generate an electronic way of money transfer such that e-coin cannot be easily traced from the center of the bank to the customer. In such a way, any two spending of the same user have no ability to linked together. Chum explained that when applying blind signatures we could get two important properties; namely intractability and unlink ability. In the blind signature the signer does not know anything about the contents of any sent message. One important and derivate of digital signatures is a blind signature. We can generate blind signature by adding some other properties to any type of digital signature. The concept of a blind signature is that it is considered a protocol for generating a signature s for a message m from a certain signer SG such that SG does not know anything about \mathbf{s} and \mathbf{m}. So the contents of the message are hidden from SG. The operation of this protocol is that any user \mathbf{U} can select a random number \mathbf{k} and merge this r into m to produce $\mathbf{m}^{\prime} . \mathbf{m}^{\prime}$ is sent to $\mathbf{S G}$ who will generate a signature s^{\prime}
corresponding to \mathbf{m}^{\prime}. SG returns back s' to the user \mathbf{U}. The user \mathbf{U} will remove the blind factor to get \mathbf{s} which is the signature of \mathbf{m}. So according to this procedure, both \mathbf{m} and \mathbf{s} are hidden from SG. The most important property of blind signature is that it unforegeable. Blind signatures are used in many sensitive applications such as cash protocol to provide a strong protection for the privacy of customers. [1]

Blind signature scheme consists of three parts. The first part is key generation which is a probabilistic polynomial time. The second part is blind signature generation. This generation is an interactive protocol between the signer SG and the user \mathbf{U}. The last part is blind signature verification which is a deterministic polynomial time algorithm. [1,2]

Blind signatures use the traditional public key cryptography in which each user has two different cryptographic keys, a private and a public key . This needs to simplify the key management, Shamir [3] invented the idea of identitybased public key cryptography .In this scheme each user must
identify himself/herself and we need a way to facilitate the users to register them at key generator centre (KGC).

There are different proposed blind signatures schemes [4-9]. The blind signature schemes are useful especially when we need o provide an anonymity .Such applications are sensitive, for example the online voting systems and the electronic cash systems [8].

El-Gamal is a cryptographic scheme used to provide a signature. If we compare it with symmetric algorithms in terms of encryption and decryption speed, we find that ElGamal is relatively slower[10-12]. This scheme is one type of a non- deterministic public key cryptography. This scheme has different signatures for the same message because it chooses different random factors. The generated signature allow message recovery and so it has many advantages [13-18]. One advantage is that it generates a shorter signatures corresponding to shorter plaintexts. ElGamal scheme combines the plaintext with the validation of the signature[4]. An improvement to ElGamal mode had been suggested by Nyberg and

Rueppel . In this modification it is possible to receive a series of signature schemes .These new schemes can provide a verification to the signature at the time of performing a message recovery [17-19].

El-Gamal signature scheme was first introduced by Taher Elgamal in 1984. This scheme can generate a signature based on difficulty of computing the discrete logarithms so it is considered a type of public key cryptosystem. There are two attacks that are may occur against El-Gamal scheme. These attacks are low modulus attack and plaintext attack [20]. The first attack can arise when we use values of modulus that are low while plaintext attack is applicable when the enemy discovers the plaintext which is corresponding its ciphetext and in this case it is easily to find the cryptographic key.

In order to provide security for digital data transmitted through communication channels, the best and effective way is by using cryptography system. Cryptography is fundamental for securing and protecting private information and other
applications of most organization [21].

Cryptography is defined simply as a study for mathematical techniques. The aim of cryptography is providing different services such as confidentiality, authentication, data integrity and nonrepudiation [22].

The early version of ElGamal scheme depends on applying Diffe-Hellman which is used for key exchange $[23,24]$

2. Related works

In [25] a new scheme of blind signature was proposed. This scheme depends on ElGamal method. In this scheme, when a message is signed different multiple times, the generated corresponding signature will still the same. This property is an important modification for blind signature in that it provides anonymity to the signature. In order to achieve this goal, the proposed scheme uses both number theory and modular arithmetic techniques. The result of this scheme shows that it is faster than the compared blind signatures of RSA.

A paper presented the usage of blind signature to design an electronic voting algorithm using ElGamal signature. This research is based on XML to analyze the security of such scheme. The result of this method shows that it provides a high level of secrecy and can be implemented practically [26].

Using the properties of blind signatures especially blindness and intractability, a paper proposed two blind signatures based which are untraceable. These blind signatures are based on the difficulty of solving the factoring problem. These types of proposed blind signature are different in traditional blind signatures in that the later schemes are based on the difficulty of solving factoring problem and quadratic residues. The signatures in this paper can fully provide all properties of the standard blind signature [27].

One of the most important applications of a blind signature is the electronic voting. Most blind signatures use an elliptic curve algorithm which it is characterized by the difficulty of solving such an algorithm. This paper presents a new scheme for implementing an electronic
voting method in such a way that the elliptic curve algorithm is combined with the blind factor. The aim of this procedure is to scramble the message's content and then it is signed. So, the signer of the message does not what the content of the message is. This scheme is also provide a way to let the voter to vote and authenticate himself/herself [28].

3. Proposed system

This system generates a new blind signature using El-Gamal Scheme. There are two players used to cooperate for generation the blind signature. The first one is the author of the message named as $\mathbf{A M}$ and the other player is the signing authority $\mathbf{S A}$. Each chooses some number . AM chooses a number \mathbf{r} and $\mathbf{S A}$ chooses a number S . El-Gamal scheme is a public key cryptosystem which is useful to solve the problem of key exchange so it used to bypass the possibility of an intercepted key. The proposed system generates two blind signatures instead of one signature as applied in the
traditional blind signature. The players in this system must
generate two values. Each value generated by one player is sent to the other player to compute an encryption key. After that the author of the message selects two random numbers $\mathbf{K}_{\mathbf{1}}$ and $\mathbf{K}_{\mathbf{2}}$ as initial parameters for generating the two blind signatures. In this step the author of the message uses his/her public key and sends the results to the signing authority who is responsible for producing the blind signatures. The result must include the context of the message and an agreement factor for each calculated result .So, the signing authority must examine the context of each message and the corresponding agreement factor. The context (c) and their agreements factors ($\mathbf{a g}$) for each user (u) are illustrated in table 1. These two blind signatures are sent back to the author of the message who can then remove the blinding factors to reveal the actual signatures sent from signing authority.

Users	Message Context	Agreement		
\mathbf{u}_{1}	$\left\{\mathbf{u}_{1} \mathbf{c}_{1}, \mathbf{u}_{1} \mathbf{c}_{2}, \ldots \ldots, \mathbf{u}_{1} \mathbf{c n}_{1}\right\}$	$\begin{aligned} & \left\{\mathbf{u}_{1} \mathbf{c}_{1} \mathbf{a g}_{1},\right. \\ & \left.\mathbf{u}_{1} \mathbf{c}_{1} \mathbf{a g n}_{1}\right\} \end{aligned}$	$\mathbf{u}_{1} \mathbf{c}_{2} \mathrm{ag}_{2}$,	\cdots
\mathbf{u}_{2}	$\left\{\mathbf{u}_{2} \mathbf{c}_{1}, \mathbf{u}_{2} \mathbf{c}_{2}, \ldots \ldots, \mathbf{u}_{2} \mathbf{c n}_{2}\right\}$	$\begin{aligned} & \left\{\mathbf{u}_{2} \mathbf{c}_{1} \mathbf{a g}_{1},\right. \\ & \left.\mathbf{u}_{2} \mathbf{c}_{1} \mathbf{a g n}_{2}\right\} \end{aligned}$	$\mathbf{u}_{2} \mathbf{c}_{2} \mathrm{ag}_{2}$,	\cdots
${ }_{\mathbf{u}}{ }^{\text {m }}$	$\left\{\mathbf{u}_{\mathrm{m}} \mathbf{c}_{1}, \mathrm{u}_{\mathrm{m}} \mathbf{c}_{2}, \ldots \ldots, \mathbf{u}_{\mathrm{m}} \mathbf{c n}_{\mathrm{m}}\right\}$	$\begin{aligned} & \left\{\mathbf{u}_{\mathrm{m}} \mathbf{c}_{\mathbf{1}} \mathbf{a g}_{1},\right. \\ & \left.\mathbf{u}_{\mathrm{m} 1} \mathbf{a g}_{\mathrm{nm}}\right\} \end{aligned}$	$\mathbf{u m}_{\text {2 }} \mathbf{a g}_{2}$,	-..,

The Algorithm
Let \mathbf{m} be the message .
Let a be the public base.
Let \mathbf{N} be the module .
Let \mathbf{U} be as set of users ; $\mathbf{U}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots \ldots, \mathbf{u}_{\mathbf{n}}\right\}$.
Let \mathbf{C} be a set of message contexts $; \mathbf{C}=\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{2}, \ldots,, \mathbf{c}_{\mathbf{m}}\right\}$.
Let $\mathbf{A G}$ be a set of agreement value $; \mathbf{A G}=\left\{\mathbf{a g}_{1}, \mathbf{a g}_{2}, \ldots ., \mathbf{a g}_{\mathrm{k}}\right\}$.
Let \mathbf{e} is a public key .
Let \mathbf{d} is the private key .

A: Encryption Key Generation:
1: AM chooses some number \mathbf{r}.
2: SA chooses another some number \mathbf{s}.
3: AM computes $\mathbf{a}^{\mathbf{s}} \bmod \mathbf{N}$ and sends it to $\mathbf{S A}$.
4: $\mathbf{S A}$ computes $\mathbf{a}^{\mathbf{r}} \bmod \mathbf{N}$ and sends it to $\mathbf{A M}$.

5: AM computes the encryption key $\left(\mathbf{e}_{\mathbf{K}}\right)$ by taking $\mathbf{S A}$'s number \mathbf{s} as following and sends it to SA:

$$
\mathbf{K}=\mathbf{s}^{\mathbf{r}} \bmod \mathbf{N}
$$

B: Generating the Blind Signatures:
1: AM chooses two random numbers $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$.
2: AM generates two encrypted messages using his/her public key (e) as following:

A: $\mathbf{m}_{\mathbf{1}} \equiv \mathbf{m}\left(\mathbf{k}_{1}\right)^{\mathbf{e}} \bmod \mathbf{N}$
$B: \mathbf{m}_{11} \equiv\left(\mathbf{m}_{\mathbf{1}}\right)^{*} \mathbf{e}_{\mathbf{K}} \bmod \mathbf{N}\left\|\mathbf{C}_{\mathbf{i}}\right\| A \mathbf{G}_{\mathbf{i}}$
$\mathrm{C}: \mathbf{m}_{\mathbf{2}} \equiv \mathbf{m}\left(\mathbf{k}_{\mathbf{2}}\right)^{\mathbf{e}} \bmod \mathbf{N}$
$\mathrm{D}: \mathbf{m}_{\mathbf{2 2}} \equiv\left(\mathbf{m}_{\mathbf{2}}\right)^{*} \mathbf{e}_{\mathbf{K}} \bmod \mathbf{N}\left\|\mathbf{C}_{\mathbf{i}}\right\| \mathbf{A G}_{\mathbf{i}}$
3: AM sends both \mathbf{m}_{11} and $\mathbf{m}_{\mathbf{2 2}}$ to $\mathbf{S A}$.
C: SA performs the following steps(generating the two blind signatures $\mathbf{s}^{\prime}{ }_{1}$ and $\mathbf{s}^{\prime}{ }_{2}$ respectively):

1: SA takes \mathbf{m}_{11} and $\mathbf{m}_{\mathbf{2 2}}$ and he/she generates two blind signatures as following:

2: SA extracts $\mathbf{C}_{\mathbf{i}}$ from both $\mathbf{m}_{\mathbf{1 1}}$ and $\mathbf{m}_{\mathbf{2 2}}$ and search for the corresponding agreement factor $\left(\mathbf{A G}_{\mathbf{i}}\right)$ in the table 1.

If the $\mathbf{A G} \mathbf{G}_{\mathbf{i}}$ is found and authenticated then $\mathbf{S A}$ generates $\mathbf{s}_{\mathbf{1}}$ and $\mathbf{s}_{\mathbf{2}}$, otherwise $\mathbf{A M}$ is considered an unauthenticated party.

3: If $\mathbf{A G}_{\mathbf{i}}$ matches the its context $\mathbf{C}_{\mathbf{i}}$ then :

$$
\begin{aligned}
& \mathbf{S}_{1}^{\prime} \equiv\left(\mathbf{m}_{11}\right)^{\mathbf{d}} \bmod \mathbf{N} \\
& \mathbf{S}_{2}^{\prime} \equiv\left(\mathbf{m}_{22}\right)^{\mathbf{d}} \bmod \mathbf{N}
\end{aligned}
$$

4: SA sends both $\mathbf{s}^{\mathbf{1}}$ and $\mathbf{s}_{\mathbf{2}}$ to $\mathbf{A M}$.
Step 4: AM can assure the validity of these signatures by removing the blind factors $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ as following:

$$
\mathbf{s}_{\mathbf{1}} \equiv \mathbf{s}_{1}{ }_{1} \cdot \mathbf{k}_{1}{ }^{-1}(\bmod \mathbf{N})
$$

$$
\mathbf{s}_{2} \equiv \mathbf{s}_{2}^{\prime} \cdot \mathbf{k}_{2}^{-1}(\bmod \mathbf{N})
$$

4. Results

Suppose base $=7, N=71$ and $\mathbf{M}=20$.
$\mathbf{A M}$ chooses $\mathbf{r}=9$ and $\mathbf{S A}$ chooses $\mathbf{s}=11$.
1: AM computes a value of base to the power of \mathbf{r} :
$\mathrm{B}=$ base $^{\mathrm{r}}=7^{9} \bmod 71=47$.
2: This value is sent to SA.
3: SA computes:
$\mathrm{A}=$ base $^{\mathrm{s}} \bmod 71=7^{11} \bmod 71=31$.
4: This value is sent to AM.
5: Generating the encryption key:
A: AM takes the value created by $\mathbf{S A}$ as following:
$\mathbf{K}_{\mathrm{e}}=\mathbf{A}^{\mathrm{s}} \bmod \mathbf{N}$.
$\mathbf{K}_{\mathrm{e}}=31^{11} \bmod 71=52$.
B: Encryption is performed as following: (the cihpertext here is denoted by C)
$\mathbf{C}=\left(\mathbf{K}_{\mathbf{e}} * \mathbf{m}\right) \bmod \mathbf{N}$
$\mathbf{C}=(52 * 20) \bmod 71=46$. This \mathbf{C} is sent to $\mathbf{S A}$
In order to perform decryption, SA finds $52^{-1} \bmod 71=56$
Then he calculates \mathbf{M} as following :
$\mathbf{M}=56 \times 46 \bmod 71=20$
Step2 (Generating the blind signatures):
We need here to select two prime numbers \mathbf{p} and \mathbf{q} to generate the public key \mathbf{e} and the corresponding private key, \mathbf{d} using the RSA scheme.

Let $\mathbf{p}=11$ and $\mathbf{q}=7$.
$\mathbf{N}_{\mathbf{1}}=\mathbf{p} \times \mathbf{q}=11 \times 7=77$.
$\boldsymbol{\omega}\left(\mathbf{N}_{1}\right)=(\mathbf{p}-1)(\mathbf{q}-1)=(11-1)(7-1)=60$.
Let $\mathbf{e}=9$
Then $\mathbf{d}=\mathbf{e}^{-1} \bmod 60=9^{-1} \bmod 60=50$
AM selects two random numbers $\mathbf{k}_{\mathbf{1}}=3$ and $\mathbf{k}_{\mathbf{2}}=7$ such that $\mathbf{G C D}\left(\mathrm{K}_{\mathbf{1}}, \mathbf{N}\right)=1$ and $\mathbf{G C D}\left(\mathbf{K}_{2}, \mathbf{N}\right)=1$.

$$
\begin{aligned}
\mathbf{M}_{\mathbf{1}} & \equiv \mathbf{m}\left(\mathbf{k}_{\mathbf{1}}\right)^{\mathbf{e}} \bmod \mathbf{N} \\
& \equiv 20(3)^{13} \bmod 71=5
\end{aligned}
$$

Let $\mathbf{G}_{\mathbf{1}}=2$ and $\mathbf{A G}_{\mathbf{1}}=4$

$$
\begin{aligned}
\mathbf{M}_{\mathbf{1 1}} & \equiv\left(\mathbf{m}_{\mathbf{1}}\right) *\left(\mathbf{e}_{\mathbf{k}}\right) \bmod \mathbf{N}\left\|\mathbf{G}_{\mathbf{1}}\right\| \mathbf{A} \mathbf{G}_{\mathbf{1}} \\
& \equiv 5^{*} 52 \bmod 71=47\|2\| 4
\end{aligned}
$$

$$
\mathbf{M}_{2} \equiv \mathbf{m}\left(\mathbf{k}_{2}\right)^{\mathbf{e}} \bmod \mathbf{N}
$$

$$
\equiv 2(7)^{13} \bmod 71=63
$$

Let $\mathbf{G}_{\mathbf{2}}=3$ and $\mathbf{A G}_{\mathbf{2}}=7$
$\mathbf{M}_{\mathbf{2 2}} \equiv \mathbf{m}_{\mathbf{2}}\left(\mathbf{e}_{\mathbf{k}}\right) \bmod \mathbf{N}\left\|\mathbf{G}_{\mathbf{2}}\right\| \mathbf{A G}_{\mathbf{2}}$

$$
\equiv 63(52) \bmod 71=10\|3\| 7
$$

Generating the two blind signatures $\mathbf{S}_{\mathbf{1}}{ }^{\mathbf{}}$ and $\mathbf{S}_{\mathbf{2}}{ }^{\prime}$ by the $\mathbf{S A}$ after extracting $\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}, \mathbf{A G}_{\mathbf{1}}$ and $\mathbf{A G}_{\mathbf{2}}$:
$\mathbf{S}_{\mathbf{1}}{ }^{\prime} \equiv\left(\mathbf{M}_{11}\right)^{\mathbf{d}} \bmod \mathbf{N}$
$\equiv 47^{37} \bmod 71=63$
$\mathbf{S}_{\mathbf{2}}{ }^{\mathbf{\prime}} \equiv\left(\mathbf{M}_{\mathbf{2 2}}\right)^{\mathbf{d}} \operatorname{Mod} \mathbf{N}$
$\equiv 10^{37} \bmod 71=$
STEP 3 : Recovering the signatures by the $\mathbf{A M}$:
$\mathbf{S}_{\mathbf{1}} \equiv \mathbf{S}_{\mathbf{1}}{ }^{\prime} . \mathbf{K}_{\mathbf{1}}{ }^{\mathbf{- 1}}(\bmod \mathbf{N})$

$$
\equiv 63.3^{-1} \bmod 71=21
$$

$$
\mathbf{S}_{\mathbf{2}} \equiv \mathbf{S}_{\mathbf{2}}{ }^{\prime} \cdot \mathbf{K}_{\mathbf{2}}{ }^{-1}(\bmod \mathbf{N})
$$

$$
\equiv 29 \cdot 7^{-1} \bmod 71=65
$$

5. Conclusions

This paper presents a new blind signature based on El-Gamal scheme. The importance of this scheme is that it generates two blind signatures by using two parameters for the same message .Each content generated by step the author of the message is encrypted by an encrypted key. This key is come from the ElGamal scheme. So this is the first modification that enforces the security of the message and increases the blindness of the

$\underline{\text { References }}$

[1] D.Chaum," Blind signatures for untraceable payments", Advances in Cryptology, Crypto'82, pp.199-203, 1982.
[2] S. Han and E. Chang, "A pairing-based blind signature scheme with message recovery", Ardil, C. (ed), Sixth International Enformatika Conference (IEC), pp. 303-308, 2005.
message. Another important support of this new scheme is that the author of the message desires to sign his/her message depending on its context. So the signer must check the context of each message sent. Also a corresponding agreement factor is attached to its context .So this method provides most properties of blind signature and it increases the degree of hiding for the message which is a desirable and strong property of perfect blind signatures.
[3] A. Shamir, " Identity-based cryptosystems and signature schemes', 1984 International cryptology conference on advances in cryptology, 1984. p. 47-53.
[4] C .Fan, L.Wu, and V. Huang ," Cryptanalysis on Chen-QiuZheng blind signature scheme", Appl Math Sci 2008;2(16):78791.
[5] N.Moldovyan," Blind collective signature scheme based on discrete logarithm
problem", Int J NetwSecur 2010;11(2):106-13.
[6] D .Pointecheval and J.Stern Security, "Aguments for digital signatures and blind signatures", Cryptol2000;13:361-96.
[7] A .Tripathy, I .Parta, and D. Jena," Proxy blind signature based on ECDLP", Int J Comp NetwSecur 2010;2(6):93-8.
[8] C.Popescu, "Blind signature schemes based on the elliptic curve discrete logarithm problem", Stud Inform Control 2010;19(4):397-402.
[9] N.Moldovyan, "Blind signature schemes from digital signature standards", Int J NetwSecur 2011;12(3):202-10.
[10] C. Zhi-ming, "An improved encryption algorithm on ELGamal algorithm[J]", Computer Applications and Software, 2005, 22 (2): 82-85.
[11] L.Wang, W.Xing,and Z.XuGuang ,"ElGamal public key cryptosystem based on integral quaternions [J]",Computer Applications, 2008,28(5):1156-1157.
[12] H.Lu and Y.Sun," A Publickey Cryptography Using Integral

Quaternions[J]", Journal of Tong Ji University, 2003, 31(12).
[13] H. Zhen-jie, W.Yu-min, and C. Ke-fei, "Generalization and improvement of Nyberg-Rueppel message recovery blind signatures[J] "Journal on Communications, 2005, 26(12): 131-135.
[14] C. Hui-yan, L. Shu-wang, and L.Zhen-hua ," Identity Based Signature Scheme with Partial Message Recovery [J]", Chinese Journal of Computers, 2006, 29 (9) : 1622-1627.
[15] C. Tian-jie and L. Dong-dai ," Security analysis of a signature scheme with message recovery[J]", Journal of Zhejiang University(Science Edition) , 2006,33 (4) :396-397
[16] K. Yuan-ping," A Signature Scheme wit h Message Recovery Based on Elliptic Curves[J]", Computer engineering and science, 2010, 32(2):58-59.
[17] K.Yberg, and R.A Rueppel, "message recovery for signature chemes based on the discrete logarithm problem," in
EUROCRYPT,1994, 182-193.
[18] W. Qing-ju, K. Bao-yuan and H. Jin-guang, " Several New ELGamal Type Digital Signature

Schemes and Their Enhanced Schemes[J]", Journal of East China Jiaotong University, 2005, 22(5): 127-138 .
[19] H.Zhang and J.Zhang," Research and Design of an Improved ELGamal Digital Signature Scheme[J], Computer Engineering and Scinece, 2009, 31(12): 35-38.
[20] S.Rashmi and K.Shiv,"Elgamal's Algorithm in Cryptography", International Journal of Scientific \& Engineering Research,2012, Volume 3
[21] M.Allam,' Security and Performance of ElGamal Encryption Parameter," Journal of Applied Sciences 5, Asian Network foe Scientific Information, 883-886, 2005.
[22] J .Alfred and C .P. Oorschot and A.Scot, "Handbook of AppliedCryptography", CRC Press, 1997.
23. T. ElGamal," A public key cryptosystem and a signature scheme based on discrete logarithms", In G. R. Blakley and D. Chaum, editors, Advances in Cryptology - Proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer

Science, pages 10-18. Springer, 1985.
24. T.ElGamal," A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31(4):469472, 1985. 9.
[25] E. Mohammad, A.Emarah and K.Shennaway," A blind signature scheme based on ElGamal signature", Radio Science Conference, 2000.17th NRSC '2000. Seventeenth National.
[26] F. Song. And Z. Cui ,"
Electronic Voting Scheme About ElGamal Blind-signatures Based on XML", 2012 International Workshop on Information and Electronics Engineering (IWIEE) , 2012.
[27] C.Chi Lee , W.Pang Yang , and M.Shiang Hwang, "' Untraceable blind signature schemes based on discrete logarithm problem ', Fundamenta Informaticae. 2002; 55(3):307-20
[28] M.Kuthe, and J.Avinash ," Implementation of Blind Digital Signature Using ECC ," Intern. J. of Computer Science and Network (IJCSN).2012; 1(5).

