
VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

5

Raafat . S Habeeb MSc

Electrical & Computer Eng. Dept.

University of Duhok

E-mail: rhabeeb@gmail.com

Mobil: 00964-7705823389

Abstract

New technology makes possible to manufacturing a better type of programmable

micro-system. Recently, Chip with the CPU, RAM, ROM, TIMERS, UARTS, and

PORTS is available, these type of chip called microcontroller. Microcontroller/

Microprocessor is a programmable device, that means the device execute a loaded

program sequentially from top to down (End of program). This type of controller

suffering from non retain last state problem, At any time the electrical power is

turned off , the Microcontroller/Microprocessor will start from initial state after

power is turned on, losing all intermediate states. If this problem will be solved, it

might be the Microcontroller/Microprocessor used as programmable sequence

controller efficiently.

 This paper provides a design of sequence controller based on a microcontroller

utilizing Serial Electrical Erasable Read Only Memory (SEEPROM) to save the

status of process event sequentially . Serial EEPROM is interfaced to the

microcontroller via I2C serial BUS, which is a two wire bus using special protocol

to transfer data between microcontroller and serial memory. The sequencer will

provided with MINI keypad to select the pre-defined time interval through

scrolling UP and DOWN the interval values which is monitor in LCD display.

This design had been manufactured and tested by controlling the medical syringe

process for long time without serious problem.

Design a Programmable Sequence

Controller Utilizing I2C BUS

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

6

1.0- Introduction

Single- chip microcontrollers are

devices designed for use in products

that usually are not considered

computers, but that require the

sophisticated and flexible control that a

computer can provide. An example of

such product is an automatic washing

machine. In contrast to microprocessor,

microcontrollers typically integrated

RAM, ROM, and I/O, logic circuits

designed to do specific tasks such as

Universal Asynchronous Receiver

Transmitter (UART), Serial port RS232

and square-wave oscillator (clock), as

well as the CPU, onto the same chip. A

microcontroller is a computer with most

of the necessary support chips onboard.

There are a number of other common

characteristics that define

microcontrollers. If a micro system

matches a majority of these

characteristics, then it can be classified

as a ‗Microcontroller‘. Microcontrollers

may be: ‗Embedded‘ inside some other

device (often a consumer product) so

that they can control the features or

actions of the product. Another name

for a microcontroller is therefore an

‗Embedded controller’. Dedicated to

one task and run one specific program.

The program is stored in ROM and

generally does not change. A

microcontroller may take an input from

the device it is controlling and controls

the device by sending signals to

different components in the device.

Most microcontroller circuits are small

and low cost compared with

microprocessor circuits, the components

may be chosen to minimize size and to

be as inexpensive as possible. The

actual processor used to implement a

microcontroller can vary widely. In

many products, such as microwave

ovens, the demand on the CPU is fairly

low and price is an important

consideration. In these cases,

manufacturers turn to dedicated

microcontroller chips – devices that

were originally designed to be low-cost,

small, low-power, embedded CPUs.

The Motorola 6811 and Intel 8051 are

both good examples of such chips [1].

The predominant family of

microcontrollers is 8-bit types since this

word size has proved popular for the

vast majority of tasks the devices have

been required to perform. The single

byte word is regarded as sufficient for

most purposes and has the advantage of

easy to interface with the variety of IC

memories and logic circuitry currently

available. The microcontroller family

would have a common instruction

subset but family members differ in the

amount, and type, of memory, timer

facility, port options, etc. possessed,

thus producing cost-effective devices

suitable for particular manufacturing

requirements. Memory expansion is

possible with off chip RAM and/or

ROM; for some family members there

is no on-chip ROM, or the ROM is

either electrically programmable ROM

(EPROM) or electrically erasable

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

7

PROM (EEPROM) known as flash

EEPROM which allows for the program

to be erased and rewritten many times.

Additional on-chip facilities could

include analogue-to-digital conversion

(ADC), digital-to-analogue conversion

(DAC) and analogue comparators.

Some family members include versions

with lower pin count for more basic

applications to minimize costs. Since

the microcontroller 8051 could not

support I2C devices, software has been

written to enable the microcontroller to

handle this type of communication.[2]

1.1- Hardware Overview

The AT89C52 is a low-power, high-

performance Complement Metal Oxide

Semiconductor (CMOS) 8-bit

microcomputer with 8K bytes of Flash

electrical erasable and programmable

read only memory (EEPROM). The

device is manufactured using Atmel‘s

high-density nonvolatile memory

technology and is compatible with the

industry-standard 80C51 and 80C52

instruction set and pin out. The on-chip

Flash allows the program memory to be

reprogrammed in-system or by a

conventional nonvolatile memory

programmer. By combining a versatile

8-bit CPU with Flash on a monolithic

chip, the Atmel AT89C52 is a powerful

microcomputer which provides a

highly-flexible and cost-effective

solution to many embedded control

applications.

The AT89C52 provides the following

standard features: 8Kbytes of Flash, 256

bytes of RAM, 32 I/O lines, three 16-

bits timer/counters, a six-vector two-

level interrupt architecture, a full-

duplex serial port, on-chip oscillator,

and clock circuitry. In addition, the

AT89C52 is designed with static logic

for operation down to zero frequency

and supports two software selectable

power saving modes. The Idle Mode

stops the CPU while allowing the RAM,

timer/counters, serial port, and interrupt

system to continue functioning. The

Power-down mode saves the RAM

contents but freezes the oscillator,

disabling all other chip functions

until the next hardware reset. The

AT89C52 has four bi-directional ports

designated as P0, P1, P2, and P3 The

block diagram of 8052 microcontroller

architecture is shown in Figure1. The

8051 could not support I2C devices like

serial memories SEEPROM [3].

1.2 Inter integrated circuit

(IIC or I2C) Bus

Commonly referred to as I squared C,

the I2C bus or IIC bus was originally

developed as a control bus for linking

microcontroller and peripheral ICs. The

simplicity of a 2-wire bus that

combined both address and data bus

functions was quickly adopted in many

applications such as :

 Telecommunications

 Automotive dashboards

 Energy management systems

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

8

 Control and measurement

products

 Medical equipment

This method of serial data

transmission uses two lines, one for a

serial clock (SCL) and the other for

serial data (SDA). The SDA line is bi-

directional, i.e. data can go up it or

down it [4].

1.2.1 The Physical I2C Bus

As mentioned earlier, I2C bus is two

wires, called SCL and SDA. SCL is the

clock line. It is used to synchronize all

data transfers over the I2C bus. SDA is

the data line. The SCL & SDA lines are

connected to all devices on the I2C bus.

There needs to be a third wire which is

just the ground or 0 volts. There may

also be a 5volt wire is power is being

distributed to the devices.

 SCL and SDA lines are "open drain/

collector" drivers. What this means is

that the chip can drive its output low,

but it cannot drive it high. For the line

to be able to go high you must provide

pull-up resistors to the 5v supply. There

should be a resistor from the SCL line

to the 5v line and another from the SDA

line to the 5v line. One set of pull-up

resistors for the whole I2C bus is the

only that need, not for each device, as

illustrated in Figure2 shown below. The

value of the resistors is not critical. It is

range from 1k8 (1800 ohms) to 4k7

(47000 ohms) used. 1k8, 4k7 and 10k

are common values, but anything in this

range should work OK. It is

recommended 1k8 as this gives you the

best performance. If the resistors are

missing, the SCL and SDA lines will

always be low - nearly 0 volts - and the

I2C bus will not work.

The devices on the I2C bus are either

masters or slaves. The master is always

the device that drives the SCL clock

line. The slaves are the devices that

respond to the master. A slave cannot

initiate a transfer over the I2C bus, only

a master can do that. There can be, and

usually are, multiple slaves on the I2C

bus, however there is normally only one

master. It is possible to have multiple

masters. Slaves will never initiate a

transfer. Both master and slave can

transfer data over the I2C bus, but that

transfer is always controlled by the

master[5].

1.2.2 TheI2C Protocol

When the master (your controller)

wishes to talk to a slave (our Serial

EEPROM in this case) it begins by

issuing a start sequence on the I2C bus.

A start sequence is one of two special

sequences defined for the I2C bus, the

other being the stop sequence. The start

sequence and stop sequence are special

in that these are the only places where

the SDA (data line) is allowed to

change while the SCL (clock line) is

high. When data is being transferred,

SDA must remain stable and not change

whilst SCL is high as shown in Figure

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

9

3. The start and stop sequences mark

the beginning and end of a transaction

with the slave device.

Data is transferred in sequences of 8

bits. The bits are placed on the SDA

line starting with the MSB (Most

Significant Bit). The SCL line is then

pulsed high, then low. For every 8 bits

transferred, the device receiving the

data sends back an acknowledge bit, so

there are actually 9 SCL clock pulses to

transfer each 8 bit byte of data. If the

receiving device sends back a low ACK

bit, then it has received the data and is

ready to accept another byte. If it sends

back a high then it is indicating it

cannot accept any further data and the

master should terminate the transfer by

sending a stop sequence [4].

The standard clock (SCL) speed for I2C

up to 100KHz. Philips do define faster

speeds: Fast mode, which is up to

400KHz and High Speed mode which is

up to 3.4MHz. All of our modules are

designed to work at up to 100 KHz. We

have tested our modules up to 1MHz

but this needs a small delay of a few

µsec between each byte transferred.

1.2.3 I2C Device Addressing

All I2C addresses are either 7 bits or 10

bits. The use of 10 bit addresses is rare

and is not covered here. All of our

modules and the common chips will

have 7 bit addresses. This means that up

to 128 devices can be connected on the

I2C bus, since a 7bit number can be

from 0 to 127. When sending out the 7

bit address, it still always needs to send

8 bits. The extra bit is used to inform

the slave if the master is writing to or

reading from it. If the bit is zero, the

master is writing to the slave. If the bit

is 1 the master is reading from the slave.

The 7 bit address is placed in the upper

7 bits of the byte and the Read/Write

(R/W) bit is in the LSB (Least

Significant Bit). The placement of the 7

bit address in the upper 7 bits of the

byte is a source of confusion for the

newcomer. For example, to write to

address 21, must actually send out 42

which is 21 moved over by 1 bit left. It

is probably easier to think of the I2C

bus addresses as 8 bit addresses, with

even addresses as write only, and the

odd addresses as the read address for

the same device. Figure 4a shows the

format of device address [5].

1.2.4- Data transfer sequence

A basic Master to slave read or write

sequence for I2C follows the following

order:

1. Send the START bit (S).

2. Send the slave address (ADDR).

3. Send the Read(R)-1 / Write (W)-0

bit.

4. Wait for/Send an acknowledge bit

(A).

5. Send/Receive the data byte (8 bits)

(DATA).

6. Expect/Send acknowledge bit (A).

7. Send STOP bit (P).

Note: It could be use 7 bit or 10 bit

addresses.

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

11

The sequence 5 and 6 can be repeated

so that a multi byte block can be read or

written.

1.2.5- Data Transfer from

master to slave

A master device sends the sequence of

signal with START, ADDRESS, and

WRITE protocol , then waits for an

acknowledge bit (A) from the slave

which the slave will only generate if its

internal address matches the value sent

by the master. If this happens then the

master sends DATA and waits for

acknowledge (A) from the slave. The

master completes the byte transfer by

generating a stop bit (P) (or repeated

start).

Figure 4b shows the protocol of data

transfer from master [4].

1.2.6-Data transfer from

slave to master

A similar process happens when a

master reads from the slave but in this

case, instead of W, R is sent. After the

data is transmitted from the slave to the

master, the master sends the

acknowledge signal (A). If instead the

master does not want any more data it

must send a not-acknowledge which

indicates to the slave that it should

release the bus. This lets the master

send the STOP or repeated START

signal. Figure4c shows the protocol of

data transfer to master [4]

2 -Materials and Methods

The serial EEPROM supports a

bidirectional two wire bus and data

transmission protocol. A device that

send data onto the bus is defined as

transmitter, and a device receiving data

as receiver. The bus has to be

controlled by a master device which

generates the serial clock (SCL),

controls the bus access, and generates

the START and STOP conditions, while

the serial EEPROM works as slave.

Both master and slave can operate as

transmitter or receiver but the master

device determines which mode is

activated, up to eight 1Kb/2Kb serial

EEPROM can be connected to the bus,

selected by the A0, A1 and A2 chip

address inputs.

The interfacing of 2K byte serial

EEPROM with microcontroller is

shown in Figure5. The memory chip

address inputs A0, A1 and A2 of serial

EEPROM must be externally connected

to either VCC or ground (VSS),

assigning to each 24C01A/02A/04A a

unique programmable address. Up to

eight 24C01A or 24C02A devices and

up to four 24C04A devices may be

connected to the bus. Chip selection is

then accomplished through software by

setting the bits A0, A1 and A2 of the

programmable slave address to the

corresponding hard-wired logic levels

of the selected 24C01A/02A/04A. After

generating a START condition, the bus

master transmits the slave fixed address

consisting of a 4-bit device code (1010)

for the 24C01A/02A/04A, followed by

the programmable chip address bits A0,

A1 and A2. SDA and SCL lines are

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

11

connected to port0.0 and port0.1 via a

pull up resistor 5KΩ [6].

2.1-Controller Design[]

The design of programmable system

normally is consisting of two parts. The

first part is concerning with the

hardware design, while the second part

is concerning with the software design.

The complexity and cost of each part

are the factors that the designer will

decide in which way where have to

emphasis. In this project it is

emphasized on software since the 8051

microcontroller is not I2C support [7].

2.1.1 Hardware Design

Many of the applications of

microcontroller fall into two categories:

Open-Loop or Closed-Loop control

systems. Open loop, often called

sequential control, is used in

applications where the process or device

being controlled is characterized by a

sequence of state. That is, the

application is event- driven. An

example is a automatic washing

machine or vending machine that accept

various value coins, recognizes product,

selection, vends the product, finds the

price, and returns the correct change.

Closed-loop control is characterized by

the use of real-time monitoring of

process to achieve effectively

continuous control. The output of the

process is monitored using various

transducers and A/D converters and the

process is modified continuously [7].

In this application, an event sequential

controller is designed; ten sequential

external events are controlled according

to verification of 8 conditions as shown

in Figure 6 below. Port 0 is configured

as output port and is used to drive 8

different processes; port 2 is used to

display the status of above process. Port

1 and p3.0 – p3.2 and p3.7 are

configured as input port that is used to

monitor the process conditions. Logic 0

is considered as active logic of port 0 to

avoid the glitches (jitter) on this port

during RESET or after turn the

controller ON. Octal inverter (open

collector type) is used to drive a relay

bank driver. Serial EPROM of 2 Kb is

used to save the last state which has

been served before the Electrical power

is off. This memory chip is interfaced to

microcontroller through ports P2.0 and

P2.1 via pull up resistors, Serial Data

(SDA), which is a bidirectional signal,

and Clock (SCL) signal are connected

to P2.1 and P2.0 respectively [8].

2.1.2 - Software Design

The function of main program is to read

the content of serial EEPROM to find

the status of the controller was before

power shutdown or system reset by

reading state number, then the program

execute the pre-fetching state. Before

transferring to execute next state, the

program updates the serial EEPROM by

writing the executing state number.

When the jumper switch throws to

maintenance position, then the program

check the all state sequentially from

state 1 up to state 10 each time pressing

the push button at P3.6 pin [9].

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

12

 Event sequential process controller is a

process variable dependent. This type of

process is performing the specific

function continuously until the process

variable is true, at this case the

controller enforce the process to jump

to and execute a next state and so on up

to the end of all process state. The

second type is time sequential process,

which is time depending process. This

means that the execution of process is

depending on a pre-defined time period

until time reach zero. At this point, the

controller enforces the process to jump

and execute next state and so on up to

the end of all state. The first type of

sequential controller is taken into

consideration during this research. The

software have not been used the

interrupt feature of microcontroller, so

it is not necessary to enable the interrupt

system of microcontroller [10]. The

software is designed in module

structure, which is a main program and

many subroutines are invoked by it. The

flow chart of main program is shown in

Figure 7.

The following is the subroutine that are

invoked by main program, all

subroutines have a common feature that

are returned a carry flag CY which

indicate the statues of writing into or

readings from serial memory

SEEPROM.

 READ STAGE NO:

Read from a specific

serial EEPROM location

with stage number. Return

CY=1 to indicate write

time over. REDBYT

subroutine is invoked by

this routine. This routine is

repeated 5 times to insure

correct reading of serial

EEPROM Registers A and

B are destroyed. The flow

chart is shown in figure 8

REDBYT: Serial EEPROM Random

Read Function, called with

programmable address in

A. Byte address in R2

return data in A. Return

CY, if CY=1, it indicates

that the bus is not available

or that the addressed device

failed to acknowledge.

Three subroutines,

SHOUT, REDCRNT, and

START, are invoked by

this routine . Registers A,B

and R2 are used . The flow

chart is shown in figure 8.

WRITE STAGE NO:

Write into a specific serial

EEPROM location with

stage number. Return

CY=1 to indicate write

time over. WRITBYT

subroutine is invoked by

this routine . This routine

is repeated 5 times to

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

13

insure correct writing into

serial EEPROM. Registers

A and B are destroyed. The

flow chart is shown in

figure 9

WRITBYT: Serial EEPROM Byte

Write function. Call with

programmable address in

A, Data in register R1.

Return CY =1, it indicates

that the bus is not available

or the addressed device

failed to acknowledge.

Two subroutines, START

and SHOUT, are invoked

by this routine.

 A is destroyed. The flow

chart is shown in figure 9.

START: This routine is recalled in

REDBYT and WRITBYT

routines. It is sending a

START signal, define as

high – to – low SDA with

SCL high. Return with

SCL, SDA low. CY=1, the

bus is not available. Non of

registers are used The flow

chart is shown in figure 11.

SHOUT: This routine is recalled in

REDBYT and WRITBYT

routines. Its function is to

shift out a byte to the serial

EEPROM, most significant

bit MSB first. SCL and

SDA expected low on

entry. Return with SCL

low, A is holding data . A

reg. will destroy. The flow

chart is shown in figure 10

REDCRNT: This routine is recalled

in REDBYT routine. The

function of this subroutine

is to read programmable

address, call with

programmable address in

A. Return data in A and

CY. If CY=1, then it

indicates that the bus is not

available or the addressed

device failed to

acknowledge. SHIN

subroutine is invoked. The

flow chart is shown in

figure 10

SHIN: This subroutine is recalled in

REDCRNT routine. The

function of this subroutine is to

shift in a byte from the

SEEPROM, most significant bit

MSB first. SCL expected low

on entry. Return with SCL

low. Returns received data byte

in A. The flow chart is shown in

figure 11

3.0 – Conclusion and

Discussion

A microcontroller with serial EEPROM

and suitable program had been

constructed as PCB card as shown in

photograph (Figure12) and put into real

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

14

test. A medical syringe manufacturing

plant had been controlled by this

controller. It was running for more than

6 months without any malfunction or

snakes.

A microcontroller is a specialized form

of microprocessor that is designed to be

self-sufficient and cost-effective, where

a microprocessor is typically designed

to be general purpose (the kind used in

a PC). Microcontrollers are frequently

found in automobiles, office machines,

toys, and appliances. Also, a

microcontroller is part of an embedded

system, which is essentially the whole

circuit board. The difference is that

microcontroller incorporates features of

microprocessor (CPU, ALU, Registers)

along with the presence of added

features like presence of

RAM,ROM,I\O ports, counter etc. Here

microcontroller control the operation of

machine using fixed program stored in

ROM that doesn't change with lifetime.

The advantages of microcontroller over

microprocessor are low cost to

manufacture, easy to implement, and

fast compare with microprocessor.

Atmel 89S52 microcontroller has a

substantial advantage over Atmel

89C52 in term of programming. 89S52

chip has in circuit programming

features, so it is not need to an external

programmer. Unfortunately, this chip is

not available in our local market, so

89C52 microcontroller has been used as

a fait accomplice.

A programmable sequential controller

card as shown in Figure10 based on

89c52 microcontroller was built and

tested. This card was substituted a big

size control board which contain a huge

number of relays and rotary sequencer.

This controller had been put into real

operation in sterilization of medical

injection process for more than year

without any serious problem, only one

malfunction of the controller happened

during this period due to spike

happened in electrical power supply

network. This causes to damage the

serial EEPROM. This controller could

be used in many home appliances such

as washing machine both for dishes or

clothing. Cooling / heating system and

etc.

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

15

Figure 1 Block diagram of 8052 Hardware Architecture

Figure 2 Interfacing Serial EEPROM withI2C

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

16

Figure 3 Timing diagram of I2C

 (a) Typical SDA and SCL Signals and address format

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

17

(b) Data transfer from master protocol

(c) Data transfer to master protocol

Figure 4

Figure 5 Multi Serial EEPROM(SEEPROM) interfacing

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

18

I

N

V

E

R

T

O

R

R
E

L
A

Y

D

R

I
V

E

R

SERIA

L
EEPRO
M

89C52

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P3.0

P3.1

P3.2

P3.7

P2.0

P2.1

12

MHz

P0.0 – P0.7

Cycle Start

Vacuum SW.

Moisture SW

Timer SW

Gas Entry SW

Gas Exposure SW

Pressure SW

Buzzer

 Pressure SW

Stop SW

 Maint. SW

Vacuum Pump

Moisture System

Moisture Exposure system

Gas Entry System

Gas Exposure System

Exhaust Blower

Re- Evacuation System

Air In bleed System

Abortion Ind

Stop Ind.

89C5

2

SCL

SDA

8052

P2.0

P2.1

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7Re -Evacuation SW

P3.2

P3.0

Serial

EEPROM

P3.7

Abortion status SW P3.1

P2.7

P2.6

P2.5

P2.4

P2.3 End Cycle Ind.

P2.2 Ready Cycle Ind.

Running Ind

D

R

I

V

E

R

D

A

R

L

I

N

G

T

O

N

A

R

R

A

Y

Figure 6 Event sequential controller

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

19

Figure 7

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

21

Figure 8

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

21

Figure 9

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

22

Figure 10

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

23

Figure 11

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

24

Figure 12 controller card

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

25

 سأفذ طفبء اىذٌِ حجٍت

 قسٌ اىْٖذسخ اىنٖشثبئٍخ ٗاىحبسجبد

 خبٍعخ دٕ٘ك

 I2Cرظٌٍَ ٍسٍطش رعبقجً ٍجشٍح ثأسزخذاً ّبقو

 اىخلاطخ

ٚغبٌجب Open Loopاٌّغ١طش اٌزؼبلجٟ ِٓ ٚعٙخ ٔظش ٕ٘ذعخ اٌغ١طشح ٠ؼزجش ِغ١طش رٚ اٌحٍمخ اٌّفزٛحخ

٠ذػٝ ثبٌّزؼبلت . اٌّزؼبلت ٠ؼًّ ثطش٠مخ اٌضِٓ اٌّحذد ِغجمب اٚ ػٓ ؽش٠ك حظٛي حذس ِب خلاي فزشح

ٚثظٛسح ِزىشسح ٚدل١مخ. أْ أعبط رظ١ُّ اٌّغ١طش اٌزؼبلجٟ اٌزم١ٍذٞ ِٓ Discrete Eventص١ِٕخ لظ١شح

. ٘زا إٌٛع ِٓ Stateإٌٛع اٌىٙش١ِٚىب١ٔىٟ ٠ؼزّذ ػٍٝ أعزخذاَ اٌىبِخ اٌذٚاسح ٌزحذ٠ذ ِٛػغ اٌحذس/ اٌحبٌخ

ِٓ اٌّغ١طشاد ٠غزخذَ فٟ اٌؼ١ٍّبد اٌظٕبػ١خ أٚ اٌٛعبئً اٌّشاد اٌغ١طشح ػ١ٍٙب , ٠ٛطف ثؼذد

الأحذاس/اٌحبلاد أٚ ِٓ اٌزٛل١زبد اٌّزؼبلجخ . ثبٌشغُ ِٓ أْ ػًّ ٘زا ِٓ اٌّزؼبلجبد غ١ش ِشْ ٚغ١ش ِز١ٓ

ثغجت أعزخذاَ أعضاء ِزحشوخ فٟ رشو١جزٗ, ٌىٓ ٠جمٝ ٘زا إٌٛع ٠ٍّه ١ِضاد حغٕخ رزفٛق ػٍٝ إٌٛع

طغ اٌّظذس اٌّغٙض ٌٍطبلخ اٌىٙشثبئ١خ الأٌىزشٟٚٔ الأػز١بدٞ ِٓ وٛٔٗ ٠حزفع ثّٛػغ اٌحذس/ اٌحبٌخ ػٕذِب ٠ٕم

لأٞ عجت وبْ, ٠ٚغزأٔف اٌّغ١طش ػٍّٗ ِغذدا ثؼذ ػٛدح رغ١ٙض اٌطبلخ اٌىٙشثبئ١خ ِٓ اٌّٛػغ اٌزٞ أٔمطغ ثٗ

 اٌّظذس اٌىٙشثبئٟ.

اٌزم١ٕخ اٌحذ٠ضخ ِىٕذ ِٓ رط٠ٛش ٔٛع ِٓ اٌّغ١طشاد اٌزؼبلج١خ اٌّجشِغخ ِؼزّذا ػٍٝ اٌزطٛس اٌزٞ حذس فٟ

 CPUٕبػخ اٌشلبئك الأٌىزش١ٔٚخ اٌذل١مخ . ٘زٖ اٌشفبئك اٌزٟ رحزٛٞ ػٍٝ ٚحذح اٌّؼبٌغخ اٌّشوض٠خ ِغبي ط

 ٚٚحذح الأرظبي اٌّزٛاٌٟ Timer ٚاٌّٛلزبد ROMٚراوشح اٌمشاءح فمؾ RAM ٚاٌزاوشح اٌؼشٛائ١خ

UART ِٕٚظبد الأدخبي ٚالأخشاط Ports ّٛسح ِزٛفشح حب١ٌب ٚرظٕف ػّٓ إٌّظِٛبد اٌّط

Embedded System ٚرذػٝ ااٌّغ١طشاد اٌّب٠ىش٠ٚخ Microcontroller اٌّغ١طشاد اٌّب٠ىش٠ٚخ .

أػلاٖ رؼزجش ِٓ اٌٛعبئً اٌّجشِغخ ٚ٘زا ٠ؼٕٟ اْ ٘زٖ اٌّغ١طشاد رٕفز اٌجشٔبِظ اٌّحًّ ػ١ٍٙب ثبٌزؼبلت ِٓ

س/اٌحبٌخ فٟ حبٌخ أٔمطبع ِظذس أػٍٝ اٌٝ الأعفً) ٔٙب٠خ اٌجشٔبِظ(. ٘زٖ اٌّغ١طشاد لا رحفع ِٛػغ اٌحذ

اٌطبلخ اٌىٙشثبئ١خ , ثً أْ اٌّغ١طش ٠غزأٔف ػٍّٗ ثؼذ ػٛدح ِظذس اٌطبلخ اٌىٙشثبئ١خ ِغذدا ِٓ اٌّٛػغ

 اٌجذائٟ ٌٍؼ١ٍّخ

٘زا اٌجحش ٠مذَ رظ١ُّ ِغ١طش رؼبلجٟ ِجشِظ ٠ؼزّذ ػٍٝ اٌغ١طشاد اٌّب٠ىش٠ٚخ ٚثأعزخذاَ راوشح رٛاٌٟ

ٌحفع ِٛػغ اٌحذس/اٌحبٌخ . ٘زا إٌٛع ِٓ اٌزاوشح رؼشك ِغ Serial EEPROMثشِغخ/ِغح وٙشثبئٟ

اٌّىْٛ ِٓ صٚط ِٓ الأعلان ٚاٌزٞ ٠غزخذَ ثشٚرٛوٛي خبص I2C اٌّغ١طش اٌّب٠ىشٚٞ ثٛاعطخ ٔبلً رٛاٌٟ

زٛٞ ثبٌٕبلً ٌٕمً اٌّؼٍِٛبد ث١ٓ اٌّغ١طش اٌّب٠ىشٚٞ ٚاٌزاوشح اٌّزٛا١ٌخ. اٌّغ١طش اٌزؼبلجٟ اٌّشاد رظ١ّّٗ ٠ح

ػٍٝ ٌٛحخ ِفبر١ح طغ١شح ٚظ١فزٙب أدخبي رٛل١زبد الأحذاس/اٌحبلاد ػٓ ؽش٠ك أخز١بس رٍه اٌم١ُ ٚػشػٙب ػٍٝ

رُ رطج١ك ٘زا اٌزظ١ُّ ػ١ٍّب ٌٍغ١طشح ػٍٝ ػ١ٍّبد رؼم١ُ اٌحمٓ اٌطج١خ ٌّٚذح ؽ٠ٍٛخ ٚثذْٚ . LCDشبشخ

 ِشبوً حم١م١خ رزوش.

VOL 3 NO 2 YEAR 2011 JOURNAL OF MADENT ALELEM COLLEGE

26

References

1- Tamy Noergaard ―Embedded system architecture A comprehensive Gide for

Engineers and Programs‖ Newnes 2005

2- Scott Mackenzie ―8051 microcontroller‖ 1995 prentice-Hall, In

3- Atmel Corporation ―8-bit Microcontroller with 8K Bytes Flash‖ 1999

4- Aix Maldonado ― I2C bus protocol and application‖ SASE Phillips 2010

5- ATMEL Corporation ―2-wire Serial EEPROM‖ 2003

6- ATMEL Corporation ― Interfacing Serial EEPROM to microcontroller‖ 2001

7- Oudjida,A,S.Liacha; Benamrouche,D; Goudjil,M;Tiar,R;Ouchabane,A;‖Design

and Test of Integrated System in Nan scale technology‖ DTIS 2006,IEEE.

8- Sam Fleming; ―Interfacing I2C Device to an Intel SMBUS Controller‖ Intel

Corporation Jan 2009

9- P.Venkatesuern; Anol Kumar; Prosenijit Mandal; Dhabal and R.Nandi; ― A

novel Opto-isolator technique for I2C bus for Glitch Elimination in an

Industrial Environment‖. International Journal of recent trend in engineering,

Vol2.No8. November 2009

10- Thomas Kugelstadt; ―Designing an isolated I2C Bus interfacing using Digital

isolator‖, analog application Journal 2011

