Implementation of Production Normalize DB based on

Functional Dependency Table (FDT)

Maitham Ali Naji

Foundation of Technical Education, College of Electrical and Electronic Techniques, Power

Department

ABSTRACT

This paper presents the result of previous papers. It is provides computerized technique
to design and create normalize relational database based on Functional Dependency Table
(FDT). The system use Data Access Object (DAO) to define tables to the table collection.
After the tables and fields have been created, the system will define an index and primary
key attributes to the first field of each table, finally the relationships type is created between

tables depend on the primary keys and foreign keys.

Keywords Relational Database, DAO Jet Engine, Visual Basic.

Lalaicy) dabael) Joaa Ao talita) dbade clily ao|gd g) gukas

]-~' S\
Glily aels oLy arenail dysuls 48 pde5) Cargs Al Alu ipadd dain ey Gl oda
o olaall Cigyatl DAO (LS asaial Akl .(FDT) poliie¥) Aih gl Jyia LA (oo dhuie Ale
S s Jiadl syl = Ldally G pgll ALl Cipny g gl sing Jglaadl (0S5 any . Lgile gana

sty el il e "aldie) Jlaall G cilBall oLas Caga "hualy . Jsaa

List of Abbreviations:

RDBMS Relational Data Base Management System
SQL Structure Query Language

OOoDBM Object Oriented Data Base Management
ERD Entity Relationship Diagram

ERT Entity Relationship Table

PK Primary Key

40

Introduction

The relational database model focuses on
logical representation of the data and its
relationships, rather than on the physical
storage details. The relational database
perceived by the user to be a collection of
tables in which data are stored [1]. RDBMS A
DBMS that manages relational databases (and
no others); equivalently, a DBMS that
implements the relational model. Note: SQL
DBMSs must be regarded as only
approximately relational at best, since SQL
involves so many departures from the
relational model [2].

Each table is a matrix consisting of a series
of row/column intersections. Tables, also
called relation, are sharing to each other by
sharing a common entity characteristic. The
relationship type (1:1, 1: M or M: N) is often
shown in relational schema to connect entities

13].

We define object orientation as a set of
design and development principles based on
conceptually autonomous computer structure
known as objects. OODBM is a database
management system that integrates the
benefits of typical database systems with
more powerful modeling and programming
characteristics of the object oriented data
model [4].

Paper [5] applies normalization rules to
ERT to produce FDT. The current system
produce normalize database based on FDT.

The DAO Object Hierarchy

The DAO is the name given to the object
model for the Jet engine. The DAO have
many levels, the top level object of the DAO
model, there is a hierarchy of other objects
and their collection, each with their own
properties and methods, which allow you to
access the data in your database [6]. The
object hierarchy is shown in figure 1.

1. DBEnNgine

The top level object in the DAO object
hierarchy is the DBEngine. There can be only

41

one DBENgine object; it contains all the other
objects in the hierarchy. You do not create the
DBEngine object, because it is available by
default.

DBFrgie

,| Workspaces

M Databas:

4@mm]hmw]mmﬂ Reon

'Qth]uﬁﬂ]HmWﬂM&?J

Figure 1. The Data Access Object (DAO)
hierarchy [6].

2. Workspaces

Most of the DAO Hierarchy lies under the
workspaces collection. A workspace is an
organizational structure that allows you to
group database connections into a named area
or session. You will need more than one
workspace if you want to access groups of
databases in different ways, such as one group
through the jet engine and the other through
ODBCDirect.

3. Groups and Users

In a Jet database, such as Microsoft
Access, you may define workgroups
consisting of Groups and Users, and their

associated permissions for accessing the
database.

4 Relation

A Relation object represents a relationship
between fields in tables or quires. You can
use the Relation object to create new
relationships [7].

5. Database

The Database object is the most important
object we will be dealing with because it
allows us to interface with the database.

To look at the structure of a database, we
need first look at the objects, collections, and
properties that exist in our DAO hierarchy;
figure 2 shows the relevant structure and
properties [6].

1.TableDefs

Just as every object under the DBENgine
object can be a collection or object,
TableDefs is a collection of TableDef objects.

TableDefs (Collection)

-—| TableDef

R

Fislds (Collaction)

|—|- Ficld
L MName

Size
Tpe
Waloe

Indixes (Collaction)

L Index
L MName

Fields
Primary
Reqguirad
Umgue

L

Figure 2. The tabledefs collection hierarchy
[6].

42

2-Fields

Of more interest than the table names are
the fields that exist in the table. Each tableDef
object contains a Fields collection, which in
turn contains one or more Field objects. The
most important properties are (name, size,
source field, source table, type and value).

3-Indexes

Just as you can look at the various fields
you have in a table, you can also view the
indexes on it. Each TableDef object can have
an associated Indexes collection with one or
more Index Object in it. The most important
properties are (fields, foreign, name, primary
and unique).

2-The System’'s Flowcharts

In [8], the program divides the entered
sentence into three parts, Subject Group, Verb
Group and complement group. Subject and
complement group are representing the source
and destination entities or attributes with its
relationship. Verb group is representing the
relation name that connects the source and
destination entities.

In [9] the system converts the subject, verb,
and complement groups to ERT instead of
ERD.

In [5] the author applies normalization rules
based on primary keys on ERT. The program
will split the primary key attributes from non
key attributes to build the functional
dependency for each table. The Functional
Dependency will store in file called FDT that
contains Table Name, PK Fields, and Table
Fields. As shown in figure 3.

The Functional Dependency Table (FDT)
for the following examples shown in figure 3.
Employee has Emp ID, Emp name and Dept
ID. Department has Dept ID , Dept Name and
Dept Location. Skill Master has Skill Code
and Skill Name. Employee Skill has Skill
Code, Skill Name and Skill level.

FD Table

TobleN¥ame | PEFields | Table Fields
()] Enghyee Eng D Eup Nne, Dept
Dvepartmeat Dept D Dvegt Name , Diept Location
IE Skl Code 3 e
[| Enghyeesid | SclCod Scl N, Sidevl

Figure 3. Functional Dependency Table
(FDT).

The FDT will be an input to the current
system. The system will pass through six
stages to produce relational database. As
shown in figure 4.

-

Create blank databaszse

L 2

Find the tables name from FIOT

s o

Find fields name for each table

fromm FIOT

¥

Create tables and its fields

-

Define the index and primary
kewv field for each table

¥

Create the relationship betw een
databaze in access

==

¥
Dri=zplay relational

Figure 4. Block diagram of production

normalize DB based on FDT.

The first stage, the system will delete the old
Database if it's existing; then create new one
in first workspace. As shown in figure 5.

43

Define Variables |

v
strDEName="Emngplovee mdb”

p 2
Delete StrDEName
¥
Open DBEngine and
Workspace (0)
v
Create blank strDBNaime

Figure 5. Create new database.

The second stage extraction tables names;
the system will store the content of FDT's
"Table Name" field that contains tables names
in list called "Table List". As shown in figure

:

Move first record

.

Loop

VTblName="Table Name" field

v

Add VTblName to Tabla-List

'

Move Next Fecord

Figure 6. Extracting tables name from
FDT.

The output of this stage will pass the table
name and its fields to procedure called
"Create Table and Fields" to create table in
DAO object. This is done by store the
primary key attribute and non key attribute in
list called "Field List". The primary key
attribute will store from PK-Field of FDT in
first location of the Field list, while the non
key attributes will store from Table Fields to
Field List. The Table Fields may contain
more than one attributes. These attributes
converted to an array by using Split
instruction, and then each element in array
will be added to Field List. This process is
repeated until end of FDT file. As shown in
figure 7.

=0

I MMove First FRecornd |
Loop

GO] —

| PKF ="PK Fields" |

»

| AddDKF co Field-List |
I

| NPKF="Table Fields" |
-

| NPKF-Armay = split (NKDF," ") |

‘i:—_::__l-"-x =0 to NPKF-Array a&ze}-

-

| Add NPKF-Amay(K)to Field-List |

| VThiName=Table List(T) |

+

[Call Create-Table™W Thi™Name Field-List)

|

©

Figure 7. Extracting fields list from FDT.

44

The output of previous flowchart will be List-
Table(0)=Employee

List-Field of Employee =[Emp ID, Emp
Name, Dept ID]

List-Table(1)=Department

List-Field of Department =[Dep ID, Dept
Name, Dept Location]

List-table(2)=Employee Skills

List-Field of Employee Skill =[Skill Code,
Emp ID, Skill Level]

List-table(3)=Skill Master

List-Field of Skill Master =[Skill Code, Skill
Name]

The Create Table and fields procedure
shown in figure 8 does the following:

1. Create table and added it to the tables
collection in DAO object.

2. Create the table's fields after the user

define the field type (Text, Number,
Date,..., etc) and added it to field
collection.

3. Assign index to first field for each table; then
added the index to index collection. As
illustrated in DAO Object Hierarchy section.

The last stage; the system will establish the
relationships between tables. This is done by
storing the tables' names and their fields in
two dimensional arrays. As shown in figure

9. The result of the flowchart is shown in

table 1.

JOURNAL OF MADENT ALELEM COLLEGE

Na

/ Vi Lis-Fidd /

[]

TD:Tabke, FLF1Frdd

Y
TD=Crege Tabg Vo Neme)

'

Fl=Cese FildLis Fild)

Append F1 to fisld allection

F1= Creae Pl Lt FeldT)

¥

Agpend Fl o fell wllechon

¥

[0 = Cresie Inden{TdeNems)

¥

103 Primary =Tme: ID¥ Ragured =Tree

¥

F2=TDX Crese Selifhst i)

]

Agpend L 1o Index Fidld collection

Y

Appand T o bdex collaction

]
F1=Natbang - F1=Neikanz

Ves

[<=LisFeldSze

Ko

Agpend TD Tl Collechion

U

TD=Nefiing

Figure 8.Create table and fields

45

NO 2

2

A mray-FD (LO=V Thild ams

-
= ForR=OwlListFisld-Size-1 =

+
Army-FD (I, B~ D=List-Fisld (R }

VOL 5 YEAR 2013

| Clear Fisld-List |
¥
(=E1 |
¥
| Movs Newt Becont |

MNo

O —mm—

Wes

Figure 9. Conversion table
dimensional arrays.

into two

Table 1. Tables names and their fields.

Column 0 Column | Column? | Cohmn 3 .. | Cel
1
10
1 Employee | Emp ID Emp Dept ID
Name
2 Department | DeptID Dept | Dept Location
Name
3 Employee Skill Code | EmpID | Skills Level
Skills
1 Skill Master | Skill Code Skill
Name
10

The system generates two types of
relationships; the first type is (1:1). Like the
relationship between Employee Skill and
Skill Master Tables. The relation called (1:1)
if two tables connect via primary key.

9

TD1, TD2: TableDef ; R=Felaton
e

<':: For I=0 to List Teble Sz :;:,

D I=ib tabladaf liz-Ehl=()

< For J=1-] pList Table Sim- 1 >

b cheiel st bld]) |

List-ble Ty ="

TDLFidd())="TDIFidd(0)

i, Yes

RelVame=TDI Name & TO2 Narre
!
| R-CmRtoReame) |
!
| RTbe-TolNme |

!

‘ R FamirnTahl= T2 Mama ‘

'

| f1 = R1 CreateFi=ld T2 Faldalh Wame |
v

£ ForeidNams = D3 Filds()) Nams
Y

| Rl pnial |
v

R1 Atebutes = dhRelatonlrique

'

tb Relation: Append R

Figure 10. 1:1 Relationship.

The flowchart shown in figure (10) does the
following:

1. Add the tables to the collection of
tablesdefs.

no

It has two nested loop; will compare

the first item of column one (Shaded
column) in two dimensional array
with all other items in the same
column; if the match success the
system creates relationship,
otherwise will take another item.

3. The program will define relationship
name.

4. Create the relationship between
tables.

5. Add the relationship to the
collection.

The second type is (1: N). Like the relation
between Departments and Employee tables.
The relation called (1:N) if one tables has
primary key and the second table has foreign

key.

The flowchart shown in figure 11 does the

following:

1. Add the tables to the collection of
tablesdefs.

2. It has four nested loop; will take
the primary key (item in shaded
column) and compare it with all
other items in array (except item in
shaded column). If the match
success the system creates
relationship, otherwise will take
another item. The steps (3-5) are

similar to above steps.

JOURNAL OF MADENT ALELEM COLLEGE

®

L
< Rellelitléelz >

TDl=ch tebledef it tzbl=]])
¢

=l Fmeamﬂm:;‘m.felch -

< FaHolTdklial

©

| Db tabladef listtablelj) |

® =

< Fa=hBnTDfie

I (f Mea) = Trien(8 Neane)
A (TDD Fislds(0) Name ©
TDB Fiskig0) Name)

| ReName=TD2 Name & TD3 Name]

'

R dCrestRelsion Rellems) |
)

| RI:ble=TDINa: |

!

| R FoweienT abla= TTAH Mama |

!

£1 =R1 CresteFiskd(f Nams)

]

1 ForsignMzma =3 Name

®

47

VOL 5 NO2 YEAR 2013

R1.Fields.Append f1

!

R1 Attributes = dbRelationUpdateCascade

v

db.Relations Append R1

I =List-Table-
Size -1

I= List-Table-
Size

Close Workspace

v

Close Databasze

Figure 11. 1: N Relationship.

JOURNAL OF MADENT ALELEM COLLEGE

3-The Implementation

The system has been implemented in
Visual Basic language. The program contains
the following main windows as shown in
figure 12.

w Helafional [lafabase

Tmplementation of Produetion Nommale DB based on
Funetional Dependency Table (FDT)

Figure 12. Main Form Window.

By click on "Create Database” button,
the program will create blank database,
and the process will be done on FDT to
extract the tables and it is fields, the
system will ask from the user to define
the data type (Number, Text, Date, etc)
for each field before adding the field to
the collection. As shown in figure 13.

Field Data Type

| Irput Fiekd Type of Emp ID m

fed

Figure (13): Input Field Data Type.

This process is repeated to give data type to
all fields of the tables as shown in Figure
(14).

48

VOL 5 NO2 YEAR 2013

B [mployee : Table

: Fis
X O st T, &
Fedbose | (aalge A
{9 Coe Tet
ExpD Tet
Sl Tet

Figure 14. Creating Tables in Access.

Finally the system will establish the
relationship between tables shown in figure
15 and displays message "The Relational
Database is done" as.

* ¢ Relationships

Emp ID
Skill Lewvel

Figure 15. Creating Relationship between
Tables.

Conclusion

The majors points can be concluded from
this system, the first one the system is easy to
use, since the user just enter the business rules
(sentences) the output system will be
normalize DB.

The second one, some time you find some
persons had high skill in DB design but
he/she does not like to learn application that
help him to apply his/her design, so the
system is very useful for this type of people.

References

1. Wisley, Addison; (2010). Fundamentals
of Database System. USA, 1172.

2. Date, C.J., (2007). The Relational
Database Dictionary. Trafford Publishing,
215.

3. Carter, John, (2000). Database Design and
Programming with Access, SQL and
Visual Basic. McGraw-Hill Publishing
Company, 483.

4. Rob, Morris, Coronel, (2010). Database
Systems: Design, Implementation, and
Management. McGraw- Hill Edition,
USA, 675.

5. Naji, Maitham Ali, (2013). Improve
Entity Relationship Table (ERT) by Using
Primary Key. Accepted not published in
Al-Mustansiriyah Journal of Science.

49

The last point the system is very useful to
provide secure DB by transmit the DB as a
FDT to end user. The end user can convert the
FDT to DB by using this program.

6. Snowdow, Nick, (2002). Oracle
Programming with Visual Basic.
SYBEXInc,USA,715.

7. VB Help, (2001). Microsoft Developer
Network (MSDN).

8. Naji, Maitham Ali, (2011). Implementation
Sentence Analysis via Verb. Foundation of
Technical Education, 24(8):83-90.

9. Naji, Maitham Ali, (2011). Proposal of
Creating Entity-Relationship Table (ERT)
From English Sentence Group. Iraqi
Journal of Computers, Communication,
Control and Systems Engineering, 11(2):
79-88.

