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Abstract

In this work, Variational Iterational Method ,which is a modified Lagrange
Multiplier, was used to solve a nonlocal problems arising in thermoelastisity , where the one
dimensional nonhomogeneous Heat equation was introduced together with the initial
condition and the homogenous nonlocal conditions to reach the analytical solution.
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Introduction

Gas Dynamics Equation using variational
iteration method, [4]. Variational iteration
method was used to solve some types of
Volterra's integro-differential equations[1].
In recent years, problems with integral
conditions have received an increasing
attention. The physical significance of
integral conditions (mean, total flux, total
energy, total mass, moments,...) has
served as a fundamental reason for the
interest carried to this type of problem [4].
1. The Variational Iteration Method [6]
To illustrate the basic idea of this
technique, we consider the following
general nonlinear equation:

The variational iteration method,
which is a modified general Lagrange
multiplier has been shown to solve
effectively, easily, and accurately a large
class of linear and nonlinear problems
with approximation converging rapidly to
accurate solutions [4], [7] recently
introduced variational iteration method
which gives rapidly convergent successive
approximations of the exact solution if
such a solution exists. This method has
proved successful in deriving analytical
solutions of linear and nonlinear
differential equations. In their paper,
Jafari, Hossinzadeh and Salehpoor solved
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L[u(x,t)]+ N[u(x,t)]= g(x,t) )

Where L is a linear operator, N is a nonlinear operator, 9isa given function of X and t

. . . >
and U is the unknown function that must be determined fort 21 )

The basic character of the variational iteration method is to construct a correction function for
equation (1) which reads

Ui, (X1) = (X, 1)+ j'ﬂ,[Lui (x,8) + N, (x,5) — g(x,5) s,
o . (2

Where 4 is a general Lagrange multiplier which can be identified optimally via variational

theory, Ui is the | th approximate solution, and Ui denotes a restricted variation, i.e.,

ol =0 , [6]. Then we substitute A into the following iteration formula:

t
ui+l(X’t) = ui (X1t) + Iﬂ‘[Lul (X1 S) + Nui (X1 S) - g(X, S)}jS, = 0,1, tee
0 .. (3)
Where U0 is the initial approximation to the solution of equation (1)

2. The Variational Iteration Method for Solving Heat Equation with Homogeneous
Nonlocal Conditions [6]

In this section, is used the variatianal iteration method for solving the one-
dimensional nonhomogeneous heat equation:

2
au(x,t)zyza U(X,t)+f(x,t), 0<x</f,  O<t<T
- b (4

together with the initial condition

u(x,0) =r(x), 0<x</

.. (5)

the homogeneous Neumann condition
WYl o o<t<T

X o .6
and the homogeneous nonlocal condition
l
ju(x,t)dx:o, 0<t<T
0 . (M
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where 7 is a nonzero constant, f is a known function of X and T, and I isa given function
of X that must satisfy the following compatibility conditions

r'(0) = j r(x)dx =0

In order to use the variational iteration method to solve such type of nonlocal
problems one must rewrite equation (4) as

L(u(x, 1)+ N(u(x,t))= f(x1)

where ot and ox* .

Therefore equation (2) becomes:

t 2~
U (061) =y () + [ 2t 292 THBOS) gy ) s
0 0os OX
.. (8)
Where 4 is the Lagrange multiplier. Thus by taking the variation of the above equation one
can have:

Spp (X, 1) = Uy (x,1) + 5jﬂ(s,t)[au‘é;(’ 5)_ 2 82‘2){(2" DT s)}ds
0

Then by using the integration by parts one can obtain

t t
Qg1 (x,) = 8 (,8) + A(8)AU; (x,9)],_, 5[ A'(s)u; (x, S)ds + 5 [ y22(s) L 5) oG, (X S) (s f (x,s)}ds
0 0
t t ~
= U (6 D[L+ A()]_, — [ A/ () (x, s)ds + S [ [— yzz(s)az”i—(zx's) —A(s)  (x, s)}ds
0 0
The stationary conditions will be:
[L1+A(s)]_, =0 - ©

and

A'(s) =0, 0<s<t

The solution of the above differential equation is

A(t) = A
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where A is an arbitrary constant. To find the value of A, substitute 4 into equation (9) to
get:

1+ A|s:t =0

Therefore

A(s)=A=-1

By substituting A==Linto equation (3) one can obtain the following iteration formula:

U (3,0 = Ui (6 8) = |

{6u (%,8) e , 0%U;(X,5)
ox?

— f(x, s)}ds
.. (10)

For simplicity, let Uo (%,1) =1(X) , then

Uy (x,0) = r(X), 0<x</

ouy (X, t)

ox =r'(x),_,=r'©0)=0,  0<t<T

x=0

and

0 0
juo(x,t)dx=jr(x)dx= 0, 0<t<T
0 0

Therefore Uy (X, ) =1 (x) is the initial approximation of the solution of equation (4) that
satisfies the initial condition, the Neumann condition and the nonlocal condition given by
equation (5)-(7).

Then by setting =0 jnto equation (10) one can have:

AUy (x,5) 5 0%Uy(X,S)
Uy (X, 1) = Ug (X,t) — j{ 0 —y #—f(x,s) ds
t
=r(x) —_[[— 72r"(x) — f (X, s)]ds
0
=r(X)+72r"()t + j f (x,s)ds
By setting i=1jn equation (10) and by substituting u, (x,1) in it, one can get Uy (X't). By

continuing in this manner one can get:
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u(x,t) = limu; (x,t)
|—00

is the solution of the nonlocal problem given by equations (4)-(7).

Next, to show the convergence of the variational iteration method for solving the nonlocal
problem given by equations (4)-(7), we gives the following theorem. This theorem is a special
case of theorem (1) that appeared in [2, ppl17].

Theorem 1: [3]

2
Let Y€ C () be the exact solution of the nonlocal problem given by equations (4)-(7)

ang Ui €C°(Q) Q={xtjo<x<r0<t<T|

, Where , be the obtained solution of the

sequence defined by equation (2.10) with Uy (X, ) =1 (X) f

E; (x,t) =u; (X, t) —u(x,t) i=01...
and
d%E, (x,t) <IE
T |, & (0],
T? )
[E;i (.0, = [ [|E: ()| dxdt
Where 00 ,

Then the sequence defined by equation (2.10) converges to Y
Proof

Since U is the exact solution of equation (2.4), then

Uy (6 1) —U(X 1) = U (X, 1) —u(x,t) - j P

au(x,s) 5 d2u(x,s)
+ -y — f(x, s)}ds
!; [ s ox?

{au (x5) 2 O°Ui(x5) | f(x,s)}ds

=U; (X, t)—u(xt)— J{ u; (x,8) —u(x, s)} 7,2;_22{ui(x,s)—u(x,s)}}ds
X
But

E; (x,0) = u; (x,0) —u(x,0) i=01...
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Then
E,(X,0) =u, (x,0) —u(x,0) =r(x)—r(x) =0

And from equation (2.10), one can have

Ui,z (X,0) = u; (x,0), i=01,...
Therefore
u; (x,0) = Uy (x,0), i=01....
Hence
E; (x,0) = u; (x,0) —u(x,0) =0, i=01...
And this implies that
Ei (1) = j‘ S (X S)

0

Thus, according to norm properties, we have

aE(xs)

£ (0, =77 %(“) e

0

2

Hence
t
||Ei+1(x’t)||2 < 72j.||Ei (x, S)szs
0
For 1 =0 one can have:
t
|E. (1), <72 [ ([Eo (x.5)],)ds
0

<y ()r(nse)le”E (x, s)||2IdS

=" max [E (x.0)]
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[E2(x 1), <72 I (E1(x.9)],)ds

t
j max |E0(x s)[,s)ds
0

By continuing in this manner one can have:
: ti
[E:(x.0), <7 max [Eo ()],

By letting | = % gne can obtain:

||Ei(X’5)||z——>0 as I——®
And this implies that

E (X 9)—0 0 i 00

Therefore

limE, (x,t) =0
|—00

Which gives

iIimui(x,t):u(x,t)

3. The Mathematical Modeling of the thermoelectricity Problem [3]:

In this section we describe the mathematical modeling for a thermoelasticity rod

v =V(X,t)

problem. Let us consider a rod 0< X<1 the temperature and the transverse

displacement z=12(x1) . The thermoelasticity rod problem can be described by the coupled
partial differential equations

olv(x,t) _, ov(x,t) 0°z2(x,t)

Ao K TVoh e .. (1)
o'z(x,t)  ,0%v(x,1)

P B ..(12)

where # is the thermal conductivity, K is the specific heat at constant strain, ¢ is the

flexural rigidity, B is a measure of the cross-coupling between thermal and mechanical
efforts, Vo is a uniform reference temperature.
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If we suppose that the initial temperature of the rod is r(x) , and the initial displacement is

F(x) - the ends X =0 and X=1 are clamped. Then

V(x,0) = r(x) ... (13)
z(x,0) = f(x) ... (14)
20,0 = 20N _ a2 2D g

= X .. (15)

Moreover if we assume that the average temperature in the rod 0<x<1js equal to G, ()
That is

jv(x,t)dx =g, (t)
0 ... (16)

and the difference between the heat exchange of the atmosphere on the end X= 0 and the
temperature on the end X =1ijs equal to g, (1) , then by using Newton's law one can have:

ov(x,t)

+v(0,t) —v(Lt) = g,(t)
OX

x=0 ces (17)

We reformulate the problem given by equation (11)-(17) into an equivalent form where the
coupled partial differential equations (11)-(12) is reduced to one partial differential equation.
To do this we introduce a new unknown function U defined as follows:

k o%z(xt
W06 = S fr, ) —v, (x, b+ p 2D
Vo ox .. (18)
where U is the entropy. Then
3
Vg ou(x,t) " ov(x,t) +V0ﬁa z(zx,t)
ot ot ox“ot ... (19)
V(X t ou(x,t
VD 2
OX ot ... (20)

By using equation (5), (11-12), one can get:

o*z(x,t)

2u(xt)  k a%v(xt)
= — =+ 8X4

X2 v, ax2

p

_ kv au(xt) +,B_262v(x,t)
Vo i ot a  ox?
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=4 —

:{kﬂloﬂ_z}au(x,t)
y7, au ot

Therefore, the entropy Y is a solution of the heat equation:

ox2 o | ot

ﬂazu(x,t) :{k g ﬁz}au(x,t)
... (21)

To deduce the initial condition on the entropy Y, we use the conditions given by equations
(13)-(14) to get:

[r(x) —vo ]+ BF"(X)

Up(X) = LS
Vo .. (22)

Then

u(x,0) = u, (x) ... (23)

To deduce the first boundary condition on the entropy Y , we integrate Y with respect to X
from X=0t0 X=1 {0 get:

1 k 1

ju(x,t)dx = —Dv(x,t)dx—vo} + ,B{
0 0

Vo

az(x 1) az(x.b)| }
8x |x:1 6X |x:0

By using equation (15)-(16) one can have:

ju(x,t)dx= Ko, -v,]
. V, ... (24)

0,0 = 8,0V,
Let 0

1
j u(x,t)dx = 6, (t)
0 ... (25)

which is the average entropy. To conclude the second boundary condition, we multiply

(1-x) 0

equation (3.9) by the weight and we integrate the result over [ ’ ] with respect to X

to obtain
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j.(l— x)u(x,t)dx = th.(l— X)v(x,t)dx -k

0 ... (26)

which is the weight average entropy. Then, instead of searching for a pair of function (v.2) ,a
solution of the problem given by equation (11)-(17), is made by searching for the function U,
solution of problem given by equation (20)-(23), then the solution will be V=U+Z

4. The Variational Iteration Method for Solving A Nonlocal Problem Arising in
Thermoelasticity [4]

The variational iteration method will be used to solve the nonlocal problem arising in
thermoelasticity.

To do this considers the one-dimensional nonhomogeneous heat equation:

2
au(x,t)za U()2(1t)+f(x’t), 0<x<1l 0<t<1
ot ox ... (27)

Together with initial condition

u(x,0) =uy(x), 0<x<1

.. (28)
And the homogeneous nonlocal conditions:
1
ju(x,t)dx =g,(t), 0<t<T
0 .. (29)
and
1
[rutydx=0,(t), O0<t<T
0 ... (30)

As mentioned above, this nonlocal problem is transformed to an equivalent one with
homogeneous nonlocal conditions by using the transformation:

v(x,t) =u(x,t)—z(x,t), 0<x<1l O0O<Zt<T
where z is defined previously.

Then the function V is seen to be the solution of the partial differential equation:

2
8V(X,t) _ 0 V(X!t) +g(x’t), 0<x<], 0<t<T
- 7 .. (31)

together with initial condition

v(x,0)=m(x), 0<x<1 .. (32)
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and the homogeneous nonlocal conditions:

1
jv(x,t)dx:o, 0<t<T
0 .. (33)

and

1
jxv(x,t)dx=0, 0<t<T
0 .. (34)

where

g(x,t) = f(x,t)—%

m(x) = Uy (x) - 2(x,0)

According to the variational iteration method, we consider the correction functional in t
direction for equation (31) in the following form:

v (x,5) 2%V(x.s)
OX 2

Vi (X,1) = v (X, t)+j/1( ){ (x,s)}ds i=01,...

.. (35)

where 4 is the generalized Lagrange multiplier. Thus by taking the variation of above
equation one can have:

v (x,5) 0%V (x.s)
0s ox?

N (X, 1) = v, (X, 1) + 5}1(3)[ -0g(x, s)}ds
0

Thus by using the integration by part, the above equation becomes:

S (%,1) = 8 (x,1) + SASV; (x,5)|,_, — 5 {z (5)V; (x,8) + A(5) T3] 0%, (X ) 1 ag(x, s)}ds

v(x S)

= a), (9 -5f [z'(s)v (x,8) + A(s) ) 4 ag(x, s)}

The stationary condition would be as follows:
1+ A(s)|,_, =0, 0<s<t
and
A'(s)=0.
Thus
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A(s) =-1.

Therefore the iterative formula for computing vi(x.1) taking the form:

2
Vi (X 1) =V (x,1) - J’,1( ){a" i(x,s) 0 \;)E;( 8)

a(x, s)}ds i=01---
.. (36)

For simplicity, let Vo (X,1) = m(x) , then

1 1 1 1 1
Ivo (x,t)dx =Im(x)dx = I[uo (x) — z(x,0)Jdx = _[uo (x)dx — I z(x,0)dx
0 0 0 0

0

1 1
=6,(0) - j [126, (0) — 66, (0) [xdx+ j [66, (0) — 46, (0) dx
0 0

= 6,(0) — 66, (0) + 36, (0) + 60, (0) — 46, (0)
-0

and,

1 1 1 1
I XV, (X, t)dx =.|‘ xm(x)dx = .[ x[ug (x) — 2(x,0) Jdx = Ixuo (x)dx — j xz(x,0)dx
0 0 0 0 0

1 1
=6,(0)— j [126, (0) — 66, (0) [x2dx + j [66, (0) — 46, (0)[xdx
0 0

= 6, (0) — 46, (0) + 26, (0) + 36, (0) — 26,(0)
-0

Then, any initial condition Vo (X,1) given by equation (32) must satisfy the homogeneous

nonlocal conditions (33)-(34) help to starting with. Then by substituting i1=0 into equation
(36) one can get:

8) = Vo (X.0) I[avo(x s)  9%g(x,5)

pvg; -g(x, S):|dS

t 2
=m(x) - 'ﬂ_ 0 aTEX) —g(x, s)}ds

t
= m(x) +tm"(x) + j [ f(x,5) —%}ds
0
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=m(x) +tm"(x) +j f (x,s)ds—z(x,t) + z(x,0)
0

= Uy (X) +tm"(x) +j f (x,8)ds — z(x,t)
0

To illustrate this method, consider the following example:
Example
Consider the following one-dimensional nonhomogeneous heat equation:

2
ou(x,t) _a U(>2<.t)+2tx_2, 0<x<l 0<t<1
at ax .o (37)

Together with the initial condition:

u(x,0) = x* . (38)
and the nonhomogeneous nonlocal conditions

1 2

ju(x,t)dx = %+%

0 .. (39)
and

1 2

_[xu(x,t)dx = %+%

0 .. (40)

It is clear that

1 1
6,(0) = 1_ [uo(9)ds = [ x?dx
3 0 0

and
1 1 1
0,00)=== Ixuo (x)dx = Ix3dx
4 0 0

That is the compatibility conditions are satisfied. To solve such problem by using the
variational iteration method, we must transform it into an equivalent problem given by
equations (31)-(34) with homogeneous nonlocal conditions.

In this case:
2 1
z(x,t) =1+t )x—g
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g(x,t) =-2

and

1
2

m(x) =X —x+=
(x) 6

NO 2 YEAR 2019

Therefore the nonlocal problem given by equation (37)-(40) becomes:

v(xt) _ dAv(xt)
ot ox?

2, 0<x<1l 0<t1

together with the initial condition:

v(x,0)=x2—x+%, 0<x<1
and the homogeneous nonlocal conditions

1 1
Iv(x,t)dx = va(x,t)dx =0, 0<t<1
0 0

Let
2 1

Vo (X,1) =m(x) = X _X+€
then

Vg 3

oS
and

o%v

> =2.

OX

Hence

Vo (X,5)  9°Vg(x,8)

vl(x,t)=v0(x,t)—.f{ s Vg,
0

=x2—x+%—j[0—2+2}15

VI
6

44
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Therefore
) 1 .
Vi(X,1) =vy(x,t) =X —x+€ 1=12,...
and this implies that
. ) 1
v(x,t) = limv; (x,t) = X —=x+=
i—0 6

Therefore the solution of the original problem is

u(x,t) = v(x,t)+ z(x,t)
=x° —x+1+(1+t2)x—1
6 6

X —x+tixetix-t
6 6

=x* +1t°x
which is the exact solution for the original nonlocal problem.
Example

Consider the following one-dimensional nonhomogeneous heat equation:

au(x,t)  o%u(x
ot ox?

't)+(1—t)e‘x, 0<x<1 0<t<1

together with the initial condition:
u(x,0) =0, 0<x<1

and the nonhomogeneous nonlocal conditions:
1
ju(x,t)dx =(l-e)t, o0<t<1
0
and
1
[ru(tydx=(@-2¢™t,  0<t<1
0

That is the compatibility conditions are satisfied. To solve such problem by using the
variational iteration method, we must transform it into an equivalent problem given by
equations (31)-(34) with homogeneous nonlocal conditions.

45



JOURNAL OF MADENAT ALELEM COLLEGE VOL 11 NO2 YEAR 2019

It is clear that
1
6,(0) = j Up (x)ds =0
0
and
1
0,(0) = [ xug (x)dx =0
0

In this case:
z(x,t) =6(1—-3e " )tx—2(1—-4e )t
z(x,0)=0
oz
—=6(1-3e)x-2(1-4e™
- ( )x—2( )
g(x,t)=e*(1-t)-6(1—3e)x+2(1—4e™)

m(x) =0-2(x,0)=0

v, (x,t) = j[e* (1—s)—6(L—3eY)x+2(1—4e ") s

e *(t- %) —6(1-3e)xt+2(1—4e ™M)t
vy (x,t) =e *(t- g) —6(1—-3e)xt+2(1—-4e )t —
j{e—x (1-s)—6(1—3e ™ )x+2(1-4e ) —e*(s —%) +6(1-3e)x—-2(1—4e) |ds
0

3
v, () —e(t —%) _6(1—3e )xt+ 2(1—de )t

By continuing in this manner one can get

i+1
Voot =e | t— | —B(—3e)xt+2(1—de M, i=12,...
(i +1)
Hence,
v(x,t) = limv; (x,t) =te ™ —6(1—3e !)xt + 2(1— 4e M)t
I—00
In this case

u(x,t) =v(x,t)+ z(x,t)
=te* —6(1—-3e)xt+2(1—-4e )t +6(1-3e )xt—2(1-4e )t
=te™”
Which is the exact solution of the original problem.
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Conclusions
In the application of the
Variational Iterational Method, it was

noted that every initial approximation to
the solution of the non-local problems
must satisfy the local and non-local
conditions that associated with these
problems. So, one can easily use the
Variational Iterational Method to solve the
one  dimensional non-homogeneous
Laplace equation with nonhomogeneous
nonlocal conditions.
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